jiuface commited on
Commit
a1c8c21
·
verified ·
1 Parent(s): 8dd78c2

Create lora_loading_patch.py

Browse files
Files changed (1) hide show
  1. lora_loading_patch.py +116 -0
lora_loading_patch.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers.utils import (
2
+ convert_unet_state_dict_to_peft,
3
+ get_peft_kwargs,
4
+ is_peft_version,
5
+ get_adapter_name,
6
+ logging,
7
+ )
8
+
9
+ logger = logging.get_logger(__name__)
10
+
11
+
12
+ # patching inject_adapter_in_model and load_peft_state_dict with low_cpu_mem_usage=True until it's merged into diffusers
13
+ def load_lora_into_transformer(
14
+ cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None
15
+ ):
16
+ """
17
+ This will load the LoRA layers specified in `state_dict` into `transformer`.
18
+
19
+ Parameters:
20
+ state_dict (`dict`):
21
+ A standard state dict containing the lora layer parameters. The keys can either be indexed directly
22
+ into the unet or prefixed with an additional `unet` which can be used to distinguish between text
23
+ encoder lora layers.
24
+ network_alphas (`Dict[str, float]`):
25
+ The value of the network alpha used for stable learning and preventing underflow. This value has the
26
+ same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
27
+ link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
28
+ transformer (`SD3Transformer2DModel`):
29
+ The Transformer model to load the LoRA layers into.
30
+ adapter_name (`str`, *optional*):
31
+ Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
32
+ `default_{i}` where i is the total number of adapters being loaded.
33
+ """
34
+ from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
35
+
36
+ keys = list(state_dict.keys())
37
+
38
+ transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)]
39
+ state_dict = {
40
+ k.replace(f"{cls.transformer_name}.", ""): v
41
+ for k, v in state_dict.items()
42
+ if k in transformer_keys
43
+ }
44
+
45
+ if len(state_dict.keys()) > 0:
46
+ # check with first key if is not in peft format
47
+ first_key = next(iter(state_dict.keys()))
48
+ if "lora_A" not in first_key:
49
+ state_dict = convert_unet_state_dict_to_peft(state_dict)
50
+
51
+ if adapter_name in getattr(transformer, "peft_config", {}):
52
+ raise ValueError(
53
+ f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name."
54
+ )
55
+
56
+ rank = {}
57
+ for key, val in state_dict.items():
58
+ if "lora_B" in key:
59
+ rank[key] = val.shape[1]
60
+
61
+ if network_alphas is not None and len(network_alphas) >= 1:
62
+ prefix = cls.transformer_name
63
+ alpha_keys = [
64
+ k
65
+ for k in network_alphas.keys()
66
+ if k.startswith(prefix) and k.split(".")[0] == prefix
67
+ ]
68
+ network_alphas = {
69
+ k.replace(f"{prefix}.", ""): v
70
+ for k, v in network_alphas.items()
71
+ if k in alpha_keys
72
+ }
73
+
74
+ lora_config_kwargs = get_peft_kwargs(
75
+ rank, network_alpha_dict=network_alphas, peft_state_dict=state_dict
76
+ )
77
+ if "use_dora" in lora_config_kwargs:
78
+ if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"):
79
+ raise ValueError(
80
+ "You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
81
+ )
82
+ else:
83
+ lora_config_kwargs.pop("use_dora")
84
+ lora_config = LoraConfig(**lora_config_kwargs)
85
+
86
+ # adapter_name
87
+ if adapter_name is None:
88
+ adapter_name = get_adapter_name(transformer)
89
+
90
+ # In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
91
+ # otherwise loading LoRA weights will lead to an error
92
+ is_model_cpu_offload, is_sequential_cpu_offload = (
93
+ cls._optionally_disable_offloading(_pipeline)
94
+ )
95
+
96
+ inject_adapter_in_model(
97
+ lora_config, transformer, adapter_name=adapter_name, low_cpu_mem_usage=True
98
+ )
99
+ incompatible_keys = set_peft_model_state_dict(
100
+ transformer, state_dict, adapter_name, low_cpu_mem_usage=True
101
+ )
102
+
103
+ if incompatible_keys is not None:
104
+ # check only for unexpected keys
105
+ unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
106
+ if unexpected_keys:
107
+ logger.warning(
108
+ f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
109
+ f" {unexpected_keys}. "
110
+ )
111
+
112
+ # Offload back.
113
+ if is_model_cpu_offload:
114
+ _pipeline.enable_model_cpu_offload()
115
+ elif is_sequential_cpu_offload:
116
+ _pipeline.enable_sequential_cpu_offload()