jiuface commited on
Commit
f4a33cd
·
verified ·
1 Parent(s): 3fefa6e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -7
app.py CHANGED
@@ -38,7 +38,7 @@ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).
38
  good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
39
 
40
  txt2img_pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
41
- # txt2img_pipe.__class__.load_lora_into_transformer = classmethod(load_lora_into_transformer)
42
 
43
  # img2img model
44
  img2img_pipe = AutoPipelineForImage2Image.from_pretrained(base_model, vae=good_vae, transformer=txt2img_pipe.transformer, text_encoder=txt2img_pipe.text_encoder, tokenizer=txt2img_pipe.tokenizer, text_encoder_2=txt2img_pipe.text_encoder_2, tokenizer_2=txt2img_pipe.tokenizer_2, torch_dtype=dtype)
@@ -67,7 +67,7 @@ class calculateDuration:
67
  else:
68
  print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
69
 
70
- @spaces.GPU(duration=120)
71
  def generate_image(orginal_image, prompt, adapter_names, steps, seed, image_strength, cfg_scale, width, height, progress):
72
 
73
 
@@ -147,7 +147,8 @@ def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
147
 
148
  def generate_random_4_digit_string():
149
  return ''.join(random.choices(string.digits, k=4))
150
-
 
151
  def run_lora(prompt, image_url, lora_strings_json, image_strength, cfg_scale, steps, randomize_seed, seed, width, height, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
152
  print("run_lora", prompt, lora_strings_json, cfg_scale, steps, width, height)
153
  gr.Info("Starting process")
@@ -167,10 +168,6 @@ def run_lora(prompt, image_url, lora_strings_json, image_strength, cfg_scale, s
167
  with calculateDuration("Unloading LoRA"):
168
  img2img_pipe.unload_lora_weights()
169
  txt2img_pipe.unload_lora_weights()
170
-
171
- print(txt2img_pipe.get_active_adapters())
172
- list_adapters_component_wise = txt2img_pipe.get_list_adapters()
173
- print(list_adapters_component_wise)
174
 
175
  lora_configs = None
176
  adapter_names = []
 
38
  good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
39
 
40
  txt2img_pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
41
+ txt2img_pipe.__class__.load_lora_into_transformer = classmethod(load_lora_into_transformer)
42
 
43
  # img2img model
44
  img2img_pipe = AutoPipelineForImage2Image.from_pretrained(base_model, vae=good_vae, transformer=txt2img_pipe.transformer, text_encoder=txt2img_pipe.text_encoder, tokenizer=txt2img_pipe.tokenizer, text_encoder_2=txt2img_pipe.text_encoder_2, tokenizer_2=txt2img_pipe.tokenizer_2, torch_dtype=dtype)
 
67
  else:
68
  print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
69
 
70
+
71
  def generate_image(orginal_image, prompt, adapter_names, steps, seed, image_strength, cfg_scale, width, height, progress):
72
 
73
 
 
147
 
148
  def generate_random_4_digit_string():
149
  return ''.join(random.choices(string.digits, k=4))
150
+
151
+ @spaces.GPU(duration=120)
152
  def run_lora(prompt, image_url, lora_strings_json, image_strength, cfg_scale, steps, randomize_seed, seed, width, height, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
153
  print("run_lora", prompt, lora_strings_json, cfg_scale, steps, width, height)
154
  gr.Info("Starting process")
 
168
  with calculateDuration("Unloading LoRA"):
169
  img2img_pipe.unload_lora_weights()
170
  txt2img_pipe.unload_lora_weights()
 
 
 
 
171
 
172
  lora_configs = None
173
  adapter_names = []