import os import gradio as gr import numpy as np import random import spaces import torch import json import logging from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image from huggingface_hub import login from diffusers.utils import load_image import time from datetime import datetime from io import BytesIO import torch.nn.functional as F from PIL import Image, ImageFilter import time import boto3 from io import BytesIO import re import json # Login Hugging Face Hub HF_TOKEN = os.environ.get("HF_TOKEN") login(token=HF_TOKEN) import diffusers # init dtype = torch.float16 # use float16 for fast generate device = "cuda" if torch.cuda.is_available() else "cpu" base_model = "black-forest-labs/FLUX.1-dev" # load pipe taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device) # img2img model img2img = AutoPipelineForImage2Image.from_pretrained(base_model, vae=good_vae, transformer=pipe.transformer, text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer, text_encoder_2=pipe.text_encoder_2, tokenizer_2=pipe.tokenizer_2, torch_dtype=dtype ) MAX_SEED = 2**32 - 1 class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time)) print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}") return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time)) if self.activity_name: print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") else: print(f"Elapsed time: {self.elapsed_time:.6f} seconds") @spaces.GPU(duration=120) def generate_image(orginal_image, prompt, adapter_names, steps, seed, image_strength, cfg_scale, width, height, progress): gr.Info("Start to generate images ...") with calculateDuration(f"Make a new generator:{seed}"): pipe.to(device) generator = torch.Generator(device=device).manual_seed(seed) with calculateDuration("Generating image"): # Generate image if orginal_image: generated_image = img2img( prompt=prompt, image=orginal_image, strength=image_strength, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale} ).images[0] else: generated_image = pipe( prompt=prompt, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, max_sequence_length=512, generator=generator, ).images[0] progress(99, "Generate image success!") return generated_image def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name): with calculateDuration("Upload images"): print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name) connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com" s3 = boto3.client( 's3', endpoint_url=connectionUrl, region_name='auto', aws_access_key_id=access_key, aws_secret_access_key=secret_key ) current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S") image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png" buffer = BytesIO() image.save(buffer, "PNG") buffer.seek(0) s3.upload_fileobj(buffer, bucket_name, image_file) print("upload finish", image_file) # start to generate thumbnail thumbnail = image.copy() thumbnail_width = 256 aspect_ratio = image.height / image.width thumbnail_height = int(thumbnail_width * aspect_ratio) thumbnail = thumbnail.resize((thumbnail_width, thumbnail_height), Image.LANCZOS) # Generate the thumbnail image filename thumbnail_file = image_file.replace(".png", "_thumbnail.png") # Save thumbnail to buffer and upload thumbnail_buffer = BytesIO() thumbnail.save(thumbnail_buffer, "PNG") thumbnail_buffer.seek(0) s3.upload_fileobj(thumbnail_buffer, bucket_name, thumbnail_file) print("upload thumbnail finish", thumbnail_file) return image_file def run_lora(prompt, image_url, lora_strings_json, image_strength, cfg_scale, steps, randomize_seed, seed, width, height, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)): print("run_lora", prompt, lora_strings_json, cfg_scale, steps, width, height) gr.Info("Starting process") img2img_model = False orginal_image = None if image_url: orginal_image = load_image(image_url) img2img_model = True # Set random seed for reproducibility if randomize_seed: with calculateDuration("Set random seed"): seed = random.randint(0, MAX_SEED) # Load LoRA weights gr.Info("Start to load LoRA ...") with calculateDuration("Unloading LoRA"): pipe.unload_lora_weights() img2img.unload_lora_weights() lora_configs = None adapter_names = [] if lora_strings_json: try: lora_configs = json.loads(lora_strings_json) except: gr.Warning("Parse lora config json failed") print("parse lora config json failed") if lora_configs: with calculateDuration("Loading LoRA weights"): adapter_weights = [] for lora_info in lora_configs: lora_repo = lora_info.get("repo") weights = lora_info.get("weights") adapter_name = lora_info.get("adapter_name") adapter_weight = lora_info.get("adapter_weight") if lora_repo and weights and adapter_name: retry_count = 3 for attempt in range(retry_count): try: if img2img_model: img2img.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name) else: pipe.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name) adapter_names.append(adapter_name) adapter_weights.append(adapter_weight) break # Load successful, exit retry loop except ValueError as e: print(f"Attempt {attempt+1}/{retry_count} failed to load LoRA adapter: {e}") if attempt == retry_count - 1: print(f"Error loading LoRA adapter: {adapter_name} after {retry_count} attempts") else: time.sleep(1) # Wait before retrying # set lora weights if len(adapter_names) > 0: if img2img_model: img2img.set_adapters(adapter_names, adapter_weights=adapter_weights) else: pipe.set_adapters(adapter_names, adapter_weights=adapter_weights) # Generate image error_message = "" try: print("Start applying for zeroGPU resources") final_image = generate_image(orginal_image, prompt, adapter_names, steps, seed, image_strength, cfg_scale, width, height, progress) except Exception as e: error_message = str(e) gr.Error(error_message) print("Run error", e) final_image = None if final_image: if upload_to_r2: url = upload_image_to_r2(final_image, account_id, access_key, secret_key, bucket) result = {"status": "success", "message": "upload image success", "url": url} else: result = {"status": "success", "message": "Image generated but not uploaded"} else: result = {"status": "failed", "message": error_message} gr.Info("Completed!") progress(100, "Completed!") return final_image, seed, json.dumps(result) # Gradio interface css=""" #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: gr.Markdown("flux-dev-multi-lora") with gr.Row(): with gr.Column(): prompt = gr.Text(label="Prompt", placeholder="Enter prompt", lines=10) lora_strings_json = gr.Text(label="LoRA Configs (JSON List String)", placeholder='[{"repo": "lora_repo1", "weights": "weights1", "adapter_name": "adapter_name1", "adapter_weight": 1}, {"repo": "lora_repo2", "weights": "weights2", "adapter_name": "adapter_name2", "adapter_weight": 1}]', lines=5) image_url = gr.Text(label="Image url", placeholder="Enter image url to enable image to image model", lines=1) run_button = gr.Button("Run", scale=0) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) with gr.Row(): image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False) account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id") access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here") secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here") bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here") with gr.Column(): result = gr.Image(label="Result", show_label=False) seed_output = gr.Text(label="Seed") json_text = gr.Text(label="Result JSON") gr.Markdown("**Disclaimer:**") gr.Markdown( "This demo is only for research purpose. This space owner cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. This space owner provides the tools, but the responsibility for their use lies with the individual user." ) inputs = [ prompt, image_url, lora_strings_json, image_strength, cfg_scale, steps, randomize_seed, seed, width, height, upload_to_r2, account_id, access_key, secret_key, bucket ] outputs = [result, seed_output, json_text] run_button.click( fn=run_lora, inputs=inputs, outputs=outputs ) demo.queue().launch()