import os import gradio as gr import numpy as np import random import spaces from diffusers import DiffusionPipeline import torch import json import logging from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images from huggingface_hub import login from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download import copy import random import time HF_TOKEN = os.environ.get("HF_TOKEN") login(token=HF_TOKEN) # init dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" base_model = "black-forest-labs/FLUX.1-dev" taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) MAX_SEED = 2**32-1 pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time if self.activity_name: print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") else: print(f"Elapsed time: {self.elapsed_time:.6f} seconds") @spaces.GPU(duration=70) def generate_image(prompt, steps, seed, cfg_scale, width, height, lora_scale, progress): pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(seed) with calculateDuration("Generating image"): # Generate image for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale}, output_type="pil", good_vae=good_vae, ): yield img def run_lora(prompt, cfg_scale, steps, lora_repo, lora_name, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): with calculateDuration("Unloading LoRA"): pipe.unload_lora_weights() # Load LoRA weights with calculateDuration(f"Loading LoRA weights for {lora_repo} {lora_name}"): pipe.load_lora_weights(lora_repo, weight_name=lora_name) # Set random seed for reproducibility with calculateDuration("Randomizing seed"): if randomize_seed: seed = random.randint(0, MAX_SEED) image_generator = generate_image(prompt, steps, seed, cfg_scale, width, height, lora_scale, progress) # Consume the generator to get the final image final_image = None step_counter = 0 for image in image_generator: step_counter+=1 final_image = image progress_bar = f'
' yield image, seed, gr.update(value=progress_bar, visible=True) yield final_image, seed, gr.update(value=progress_bar, visible=False) css=""" #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: gr.Markdown("Flux with lora") with gr.Row(): with gr.Column(): prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False) lora_repo = gr.Text( label="Repo", max_lines=1, placeholder="Enter a lora repo", visible=True) lora_name = gr.Text( label="Weights", max_lines=1, placeholder="Enter a lora weights",visible=True) run_button = gr.Button("Run", scale=0) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95) with gr.Row(): width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) with gr.Row(): cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) with gr.Column(): progress_bar = gr.Markdown(elem_id="progress",visible=False) result = gr.Image(label="Result", show_label=False) gr.on( triggers=[run_button.click, prompt.submit], fn = run_lora, inputs = [prompt, cfg_scale, steps, lora_repo, lora_name, randomize_seed, seed, width, height, lora_scale], outputs=[result, seed, progress_bar] ) demo.queue().launch()