John6666 commited on
Commit
9ceef7d
·
verified ·
1 Parent(s): 245e508

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +1 -1
  2. live_preview_helpers.py +166 -166
  3. mod.py +3 -3
  4. modutils.py +6 -5
app.py CHANGED
@@ -301,7 +301,7 @@ css = '''
301
  .styler{--form-gap-width: 0px !important}
302
  #model-info {text-align: center; !important}
303
  '''
304
- with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
305
  with gr.Tab("FLUX LoRA the Explorer"):
306
  title = gr.HTML(
307
  """<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA">FLUX LoRA the Explorer Mod</h1>""",
 
301
  .styler{--form-gap-width: 0px !important}
302
  #model-info {text-align: center; !important}
303
  '''
304
+ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css, delete_cache=(60, 3600)) as app:
305
  with gr.Tab("FLUX LoRA the Explorer"):
306
  title = gr.HTML(
307
  """<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA">FLUX LoRA the Explorer Mod</h1>""",
live_preview_helpers.py CHANGED
@@ -1,166 +1,166 @@
1
- import torch
2
- import numpy as np
3
- from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
4
- from typing import Any, Dict, List, Optional, Union
5
-
6
- # Helper functions
7
- def calculate_shift(
8
- image_seq_len,
9
- base_seq_len: int = 256,
10
- max_seq_len: int = 4096,
11
- base_shift: float = 0.5,
12
- max_shift: float = 1.16,
13
- ):
14
- m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
15
- b = base_shift - m * base_seq_len
16
- mu = image_seq_len * m + b
17
- return mu
18
-
19
- def retrieve_timesteps(
20
- scheduler,
21
- num_inference_steps: Optional[int] = None,
22
- device: Optional[Union[str, torch.device]] = None,
23
- timesteps: Optional[List[int]] = None,
24
- sigmas: Optional[List[float]] = None,
25
- **kwargs,
26
- ):
27
- if timesteps is not None and sigmas is not None:
28
- raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
29
- if timesteps is not None:
30
- scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
31
- timesteps = scheduler.timesteps
32
- num_inference_steps = len(timesteps)
33
- elif sigmas is not None:
34
- scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
35
- timesteps = scheduler.timesteps
36
- num_inference_steps = len(timesteps)
37
- else:
38
- scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
39
- timesteps = scheduler.timesteps
40
- return timesteps, num_inference_steps
41
-
42
- # FLUX pipeline function
43
- @torch.inference_mode()
44
- def flux_pipe_call_that_returns_an_iterable_of_images(
45
- self,
46
- prompt: Union[str, List[str]] = None,
47
- prompt_2: Optional[Union[str, List[str]]] = None,
48
- height: Optional[int] = None,
49
- width: Optional[int] = None,
50
- num_inference_steps: int = 28,
51
- timesteps: List[int] = None,
52
- guidance_scale: float = 3.5,
53
- num_images_per_prompt: Optional[int] = 1,
54
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
55
- latents: Optional[torch.FloatTensor] = None,
56
- prompt_embeds: Optional[torch.FloatTensor] = None,
57
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
58
- output_type: Optional[str] = "pil",
59
- return_dict: bool = True,
60
- joint_attention_kwargs: Optional[Dict[str, Any]] = None,
61
- max_sequence_length: int = 512,
62
- good_vae: Optional[Any] = None,
63
- ):
64
- height = height or self.default_sample_size * self.vae_scale_factor
65
- width = width or self.default_sample_size * self.vae_scale_factor
66
-
67
- # 1. Check inputs
68
- self.check_inputs(
69
- prompt,
70
- prompt_2,
71
- height,
72
- width,
73
- prompt_embeds=prompt_embeds,
74
- pooled_prompt_embeds=pooled_prompt_embeds,
75
- max_sequence_length=max_sequence_length,
76
- )
77
-
78
- self._guidance_scale = guidance_scale
79
- self._joint_attention_kwargs = joint_attention_kwargs
80
- self._interrupt = False
81
-
82
- # 2. Define call parameters
83
- batch_size = 1 if isinstance(prompt, str) else len(prompt)
84
- device = self._execution_device
85
-
86
- # 3. Encode prompt
87
- lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
88
- prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
89
- prompt=prompt,
90
- prompt_2=prompt_2,
91
- prompt_embeds=prompt_embeds,
92
- pooled_prompt_embeds=pooled_prompt_embeds,
93
- device=device,
94
- num_images_per_prompt=num_images_per_prompt,
95
- max_sequence_length=max_sequence_length,
96
- lora_scale=lora_scale,
97
- )
98
- # 4. Prepare latent variables
99
- num_channels_latents = self.transformer.config.in_channels // 4
100
- latents, latent_image_ids = self.prepare_latents(
101
- batch_size * num_images_per_prompt,
102
- num_channels_latents,
103
- height,
104
- width,
105
- prompt_embeds.dtype,
106
- device,
107
- generator,
108
- latents,
109
- )
110
- # 5. Prepare timesteps
111
- sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
112
- image_seq_len = latents.shape[1]
113
- mu = calculate_shift(
114
- image_seq_len,
115
- self.scheduler.config.base_image_seq_len,
116
- self.scheduler.config.max_image_seq_len,
117
- self.scheduler.config.base_shift,
118
- self.scheduler.config.max_shift,
119
- )
120
- timesteps, num_inference_steps = retrieve_timesteps(
121
- self.scheduler,
122
- num_inference_steps,
123
- device,
124
- timesteps,
125
- sigmas,
126
- mu=mu,
127
- )
128
- self._num_timesteps = len(timesteps)
129
-
130
- # Handle guidance
131
- guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
132
-
133
- # 6. Denoising loop
134
- for i, t in enumerate(timesteps):
135
- if self.interrupt:
136
- continue
137
-
138
- timestep = t.expand(latents.shape[0]).to(latents.dtype)
139
-
140
- noise_pred = self.transformer(
141
- hidden_states=latents,
142
- timestep=timestep / 1000,
143
- guidance=guidance,
144
- pooled_projections=pooled_prompt_embeds,
145
- encoder_hidden_states=prompt_embeds,
146
- txt_ids=text_ids,
147
- img_ids=latent_image_ids,
148
- joint_attention_kwargs=self.joint_attention_kwargs,
149
- return_dict=False,
150
- )[0]
151
- latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
152
-
153
- # Yield intermediate result
154
- latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
155
- latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
156
- image = self.vae.decode(latents_for_image, return_dict=False)[0]
157
- yield self.image_processor.postprocess(image, output_type=output_type)[0]
158
- torch.cuda.empty_cache()
159
-
160
- # Final image using good_vae
161
- latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
162
- latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
163
- image = good_vae.decode(latents, return_dict=False)[0]
164
- self.maybe_free_model_hooks()
165
- torch.cuda.empty_cache()
166
- yield self.image_processor.postprocess(image, output_type=output_type)[0]
 
1
+ import torch
2
+ import numpy as np
3
+ from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
4
+ from typing import Any, Dict, List, Optional, Union
5
+
6
+ # Helper functions
7
+ def calculate_shift(
8
+ image_seq_len,
9
+ base_seq_len: int = 256,
10
+ max_seq_len: int = 4096,
11
+ base_shift: float = 0.5,
12
+ max_shift: float = 1.16,
13
+ ):
14
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
15
+ b = base_shift - m * base_seq_len
16
+ mu = image_seq_len * m + b
17
+ return mu
18
+
19
+ def retrieve_timesteps(
20
+ scheduler,
21
+ num_inference_steps: Optional[int] = None,
22
+ device: Optional[Union[str, torch.device]] = None,
23
+ timesteps: Optional[List[int]] = None,
24
+ sigmas: Optional[List[float]] = None,
25
+ **kwargs,
26
+ ):
27
+ if timesteps is not None and sigmas is not None:
28
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
29
+ if timesteps is not None:
30
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
31
+ timesteps = scheduler.timesteps
32
+ num_inference_steps = len(timesteps)
33
+ elif sigmas is not None:
34
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
35
+ timesteps = scheduler.timesteps
36
+ num_inference_steps = len(timesteps)
37
+ else:
38
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
39
+ timesteps = scheduler.timesteps
40
+ return timesteps, num_inference_steps
41
+
42
+ # FLUX pipeline function
43
+ @torch.inference_mode()
44
+ def flux_pipe_call_that_returns_an_iterable_of_images(
45
+ self,
46
+ prompt: Union[str, List[str]] = None,
47
+ prompt_2: Optional[Union[str, List[str]]] = None,
48
+ height: Optional[int] = None,
49
+ width: Optional[int] = None,
50
+ num_inference_steps: int = 28,
51
+ timesteps: List[int] = None,
52
+ guidance_scale: float = 3.5,
53
+ num_images_per_prompt: Optional[int] = 1,
54
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
55
+ latents: Optional[torch.FloatTensor] = None,
56
+ prompt_embeds: Optional[torch.FloatTensor] = None,
57
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
58
+ output_type: Optional[str] = "pil",
59
+ return_dict: bool = True,
60
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
61
+ max_sequence_length: int = 512,
62
+ good_vae: Optional[Any] = None,
63
+ ):
64
+ height = height or self.default_sample_size * self.vae_scale_factor
65
+ width = width or self.default_sample_size * self.vae_scale_factor
66
+
67
+ # 1. Check inputs
68
+ self.check_inputs(
69
+ prompt,
70
+ prompt_2,
71
+ height,
72
+ width,
73
+ prompt_embeds=prompt_embeds,
74
+ pooled_prompt_embeds=pooled_prompt_embeds,
75
+ max_sequence_length=max_sequence_length,
76
+ )
77
+
78
+ self._guidance_scale = guidance_scale
79
+ self._joint_attention_kwargs = joint_attention_kwargs
80
+ self._interrupt = False
81
+
82
+ # 2. Define call parameters
83
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
84
+ device = self._execution_device
85
+
86
+ # 3. Encode prompt
87
+ lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
88
+ prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
89
+ prompt=prompt,
90
+ prompt_2=prompt_2,
91
+ prompt_embeds=prompt_embeds,
92
+ pooled_prompt_embeds=pooled_prompt_embeds,
93
+ device=device,
94
+ num_images_per_prompt=num_images_per_prompt,
95
+ max_sequence_length=max_sequence_length,
96
+ lora_scale=lora_scale,
97
+ )
98
+ # 4. Prepare latent variables
99
+ num_channels_latents = self.transformer.config.in_channels // 4
100
+ latents, latent_image_ids = self.prepare_latents(
101
+ batch_size * num_images_per_prompt,
102
+ num_channels_latents,
103
+ height,
104
+ width,
105
+ prompt_embeds.dtype,
106
+ device,
107
+ generator,
108
+ latents,
109
+ )
110
+ # 5. Prepare timesteps
111
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
112
+ image_seq_len = latents.shape[1]
113
+ mu = calculate_shift(
114
+ image_seq_len,
115
+ self.scheduler.config.base_image_seq_len,
116
+ self.scheduler.config.max_image_seq_len,
117
+ self.scheduler.config.base_shift,
118
+ self.scheduler.config.max_shift,
119
+ )
120
+ timesteps, num_inference_steps = retrieve_timesteps(
121
+ self.scheduler,
122
+ num_inference_steps,
123
+ device,
124
+ timesteps,
125
+ sigmas,
126
+ mu=mu,
127
+ )
128
+ self._num_timesteps = len(timesteps)
129
+
130
+ # Handle guidance
131
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
132
+
133
+ # 6. Denoising loop
134
+ for i, t in enumerate(timesteps):
135
+ if self.interrupt:
136
+ continue
137
+
138
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
139
+
140
+ noise_pred = self.transformer(
141
+ hidden_states=latents,
142
+ timestep=timestep / 1000,
143
+ guidance=guidance,
144
+ pooled_projections=pooled_prompt_embeds,
145
+ encoder_hidden_states=prompt_embeds,
146
+ txt_ids=text_ids,
147
+ img_ids=latent_image_ids,
148
+ joint_attention_kwargs=self.joint_attention_kwargs,
149
+ return_dict=False,
150
+ )[0]
151
+ # Yield intermediate result
152
+ latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
153
+ latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
154
+ image = self.vae.decode(latents_for_image, return_dict=False)[0]
155
+ yield self.image_processor.postprocess(image, output_type=output_type)[0]
156
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
157
+ torch.cuda.empty_cache()
158
+
159
+
160
+ # Final image using good_vae
161
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
162
+ latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
163
+ image = good_vae.decode(latents, return_dict=False)[0]
164
+ self.maybe_free_model_hooks()
165
+ torch.cuda.empty_cache()
166
+ yield self.image_processor.postprocess(image, output_type=output_type)[0]
mod.py CHANGED
@@ -1,11 +1,10 @@
 
1
  import gradio as gr
2
  import torch
3
- import spaces
4
-
5
  from pathlib import Path
6
  import gc
7
  import subprocess
8
- from PIL import Image
9
 
10
 
11
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
@@ -25,6 +24,7 @@ models = [
25
  "John6666/copycat-flux-test-fp8-v11-fp8-flux",
26
  "John6666/flux-dev8-anime-nsfw-fp8-flux",
27
  "John6666/nepotism-fuxdevschnell-v3aio-fp8-flux",
 
28
  "John6666/niji-style-flux-devfp8-fp8-flux",
29
  "John6666/niji56-style-v3-fp8-flux",
30
  "John6666/lyh-dalle-anime-v12dalle-fp8-flux",
 
1
+ import spaces
2
  import gradio as gr
3
  import torch
4
+ from PIL import Image
 
5
  from pathlib import Path
6
  import gc
7
  import subprocess
 
8
 
9
 
10
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
 
24
  "John6666/copycat-flux-test-fp8-v11-fp8-flux",
25
  "John6666/flux-dev8-anime-nsfw-fp8-flux",
26
  "John6666/nepotism-fuxdevschnell-v3aio-fp8-flux",
27
+ "John6666/sumeshiflux1s-v002e-bf16-flux",
28
  "John6666/niji-style-flux-devfp8-fp8-flux",
29
  "John6666/niji56-style-v3-fp8-flux",
30
  "John6666/lyh-dalle-anime-v12dalle-fp8-flux",
modutils.py CHANGED
@@ -39,7 +39,6 @@ def get_local_model_list(dir_path):
39
 
40
  def download_things(directory, url, hf_token="", civitai_api_key=""):
41
  url = url.strip()
42
-
43
  if "drive.google.com" in url:
44
  original_dir = os.getcwd()
45
  os.chdir(directory)
@@ -187,10 +186,10 @@ def get_model_id_list():
187
  try:
188
  models_likes = []
189
  for author in HF_MODEL_USER_LIKES:
190
- models_likes.extend(api.list_models(author=author, cardData=True, sort="likes"))
191
  models_ex = []
192
  for author in HF_MODEL_USER_EX:
193
- models_ex = api.list_models(author=author, cardData=True, sort="last_modified")
194
  except Exception as e:
195
  print(f"Error: Failed to list {author}'s models.")
196
  print(e)
@@ -200,8 +199,8 @@ def get_model_id_list():
200
  anime_models = []
201
  real_models = []
202
  for model in models_ex:
203
- if not model.private:
204
- anime_models.append(model.id) if 'anime' in model.tags else real_models.append(model.id)
205
  model_ids.extend(anime_models)
206
  model_ids.extend(real_models)
207
  model_id_list = model_ids.copy()
@@ -252,6 +251,8 @@ def get_tupled_model_list(model_list):
252
  tags = model.tags
253
  info = []
254
  if not 'diffusers' in tags: continue
 
 
255
  if 'diffusers:StableDiffusionXLPipeline' in tags:
256
  info.append("SDXL")
257
  elif 'diffusers:StableDiffusionPipeline' in tags:
 
39
 
40
  def download_things(directory, url, hf_token="", civitai_api_key=""):
41
  url = url.strip()
 
42
  if "drive.google.com" in url:
43
  original_dir = os.getcwd()
44
  os.chdir(directory)
 
186
  try:
187
  models_likes = []
188
  for author in HF_MODEL_USER_LIKES:
189
+ models_likes.extend(api.list_models(author=author, task="text-to-image", cardData=True, sort="likes"))
190
  models_ex = []
191
  for author in HF_MODEL_USER_EX:
192
+ models_ex = api.list_models(author=author, task="text-to-image", cardData=True, sort="last_modified")
193
  except Exception as e:
194
  print(f"Error: Failed to list {author}'s models.")
195
  print(e)
 
199
  anime_models = []
200
  real_models = []
201
  for model in models_ex:
202
+ if not model.private and not model.gated and "diffusers:FluxPipeline" not in model.tags:
203
+ anime_models.append(model.id) if "anime" in model.tags else real_models.append(model.id)
204
  model_ids.extend(anime_models)
205
  model_ids.extend(real_models)
206
  model_id_list = model_ids.copy()
 
251
  tags = model.tags
252
  info = []
253
  if not 'diffusers' in tags: continue
254
+ if 'diffusers:FluxPipeline' in tags:
255
+ info.append("FLUX.1")
256
  if 'diffusers:StableDiffusionXLPipeline' in tags:
257
  info.append("SDXL")
258
  elif 'diffusers:StableDiffusionPipeline' in tags: