File size: 10,506 Bytes
ea9d7db
 
 
 
 
 
 
 
23c1d69
ea9d7db
 
 
 
 
 
1f81e28
23c1d69
 
 
 
 
 
 
 
 
 
 
 
1f81e28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea9d7db
 
 
 
 
 
 
 
 
 
 
 
 
 
23c1d69
 
 
21d2d39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea9d7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d2d39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea9d7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58f0fe7
ad5a55f
ea9d7db
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import openai, os
import gradio as gr
import time
import boto3
import json
import numpy as np
import wave
import io
import os
from langchain import OpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationSummaryBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import HumanMessage
import subprocess
from contextlib import closing
import asyncio

# This example uses aiofile for asynchronous file reads.
# It's not a dependency of the project but can be installed
# with `pip install aiofile`.
import aiofile

from amazon_transcribe.client import TranscribeStreamingClient
from amazon_transcribe.handlers import TranscriptResultStreamHandler
from amazon_transcribe.model import TranscriptEvent
from amazon_transcribe.utils import apply_realtime_delay

# Run a shell command
command = "which ffmpeg"
result = subprocess.run(command, shell=True, capture_output=True, text=True)

# Check the command output
if result.returncode == 0:
    print("Command executed successfully")
    print("Command output:")
    print(result.stdout)
else:
    print("Command failed")
    print("Error message:")
    print(result.stderr)


openai.api_key = os.environ["OPENAI_API_KEY"]

polly = boto3.client('polly', region_name='us-east-1')
s3 = boto3.client('s3')
transcribe = boto3.client('transcribe')


memory = ConversationSummaryBufferMemory(llm=ChatOpenAI(), max_token_limit=2048)
conversation = ConversationChain(
    llm=OpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], max_tokens=2048, temperature=0.5), 
    memory=memory,
)

SAMPLE_RATE = 16000
BYTES_PER_SAMPLE = 2
CHANNEL_NUMS = 1
AUDIO_PATH = ''
CHUNK_SIZE = 1024 * 8
REGION = "us-west-2"
transcript_text = ''
transcriptions = []

class MyEventHandler(TranscriptResultStreamHandler):
    def __init__(self, transcript_result_stream):
            super().__init__(transcript_result_stream)
            self.transcriptions = []
    async def handle_transcript_event(self, transcript_event: TranscriptEvent):
        # This handler can be implemented to handle transcriptions as needed.
        # Here's an example to get started.
        results = transcript_event.transcript.results
        for result in results:
            for alt in result.alternatives:
                print(alt.transcript)
                transcriptions.append(alt.transcript)


async def basic_transcribe():
    # Setup up our client with our chosen AWS region
    client = TranscribeStreamingClient(region=REGION)

    # Start transcription to generate our async stream
    stream = await client.start_stream_transcription(
        language_code="zh-CN",
        media_sample_rate_hz=SAMPLE_RATE,
        media_encoding="pcm",
    )

    async def write_chunks():
        # NOTE: For pre-recorded files longer than 5 minutes, the sent audio
        # chunks should be rate limited to match the realtime bitrate of the
        # audio stream to avoid signing issues.
        async with aiofile.AIOFile(AUDIO_PATH, "rb") as afp:
            reader = aiofile.Reader(afp, chunk_size=CHUNK_SIZE)
            await apply_realtime_delay(
                stream, reader, BYTES_PER_SAMPLE, SAMPLE_RATE, CHANNEL_NUMS
            )
        await stream.input_stream.end_stream()

    # Instantiate our handler and start processing events
    handler = MyEventHandler(stream.output_stream)
    await asyncio.gather(write_chunks(), handler.handle_events())
    # Retrieve the transcriptions from the handler
    #transcriptions = handler.transcriptions


def download_file(bucket_name, object_key, file_path):
    try:
        # Download the file from S3
        s3.download_file(bucket_name, object_key, file_path)
        print(f"File downloaded successfully: {file_path}")
    except Exception as e:
        print(f"Error downloading file: {str(e)}")


def play_s3_voice(text):
    response = polly.start_speech_synthesis_task(
        OutputS3BucketName='lingo-audio-materials', #this bucket is in us-east-1
        OutputS3KeyPrefix='answers/',
        OutputFormat='mp3',
        Text=text,
        VoiceId='Zhiyu',
        LanguageCode='cmn-CN',
        Engine='neural'
    )
    
    # Print the task ID and status
    task_id = response['SynthesisTask']['TaskId']
    print('Task ID:', task_id)
    
    while True:
        task = polly.get_speech_synthesis_task(TaskId=task_id)
        task_status = task['SynthesisTask']['TaskStatus']
    
        if task_status == 'completed':
            break
        elif task_status  == 'failed':
            # Task failed
            print('Task failed:', task['SynthesisTask']['TaskStatusReason'])
            break
        else:
            print("Polly synthesis task is still in progress...")
            time.sleep(1)

    output_uri = response['SynthesisTask']['OutputUri']
    print("polly output_uri:"+output_uri)
    output_uri = output_uri.replace("https://", "")

    # Split the URI into bucket name and key
    results = output_uri.split("/")
    bucket_name = results[1]
    key_name = results[2]+'/'+results[3]
    print("bucket name:"+bucket_name)
    print("key name:"+key_name)

    mp3_pre_signed_url = s3.generate_presigned_url('get_object',Params={'Bucket': bucket_name,'Key': key_name},ExpiresIn=3600)
    print("mp3_pre_signed_url:"+mp3_pre_signed_url)

    output_file = "/tmp/from-s3.mp3"
    current_dir = os.getcwd()
    #file_absolute_path = current_dir+'/'+output_file
    print("current dir:"+current_dir)
    print("output_file_location: "+output_file)
    download_file(bucket_name, key_name, output_file)
    #encoded_path = file_absolute_path.encode("utf-8")

    #tmp_aud_file_url = output_file
    #htm_audio = f'<audio><source src={tmp_aud_file_url} type="audio/mp3" autoplay></audio>'
    #audio_htm = gr.HTML(htm_audio)
    return output_file 

def predict(input, history=[]):
    history.append(input)
    response = conversation.predict(input=input)
    print("GPT response: "+response)
    history.append(response)
    audio_file = play_s3_voice(response)
    responses = [(u,b) for u,b in zip(history[::2], history[1::2])]
    print("all historical responses: "+str(responses))
    return responses, audio_file, history

def transcribe_func_new(audio):
    audio_file = open(audio, "rb")
    wav_file = audio_file.name
    print("audio_file: "+wav_file)
    #transcript = openai.Audio.transcribe("whisper-1", audio_file)
    #return transcript['text']
    
    pcm_file = os.path.splitext(wav_file)[0] + ".pcm"

    wav_to_pcm(wav_file, pcm_file)
    AUDIO_PATH=pcm_file

    loop = asyncio.get_event_loop()
    loop.run_until_complete(basic_transcribe())
    loop.close()

    transcript_text = transcriptions[-1]
    print("final transcribe script: "+transcript_text)
    return transcript_text    

def transcribe_func_old(audio):
    audio_file = open(audio, "rb")
    file_name = audio_file.name
    #file_directory = os.path.dirname(audio_file.name)
    print("audio_file: "+file_name)
    #transcript = openai.Audio.transcribe("whisper-1", audio_file)
    #return transcript['text']
    
    # Set up the job parameters
    job_name = "lingo-demo"
    text_output_bucket = 'lingo-text-material' #this bucket is in us-west-1
    text_output_key = 'transcriptions/question.json'
    text_output_key = 'transcriptions/'+job_name+'.json'
    language_code = 'zh-CN'

    # Upload the file to an S3 bucket
    audio_input_bucket_name = "lingo-audio-material"
    audio_input_s3_key = "questions/tmp-question-from-huggingface.wav"
    
    s3.upload_file(file_name, audio_input_bucket_name, audio_input_s3_key)
    
    # Construct the S3 bucket URI
    s3_uri = f"s3://{audio_input_bucket_name}/{audio_input_s3_key}"

    response = transcribe.list_transcription_jobs()
    
    # Iterate through the jobs and print their names
    for job in response['TranscriptionJobSummaries']:
        print(job['TranscriptionJobName'])
        if job['TranscriptionJobName'] == job_name:
            response = transcribe.delete_transcription_job(TranscriptionJobName=job_name)
            print("delete transcribe job response:"+str(response))

    # Create the transcription job
    response = transcribe.start_transcription_job(
        TranscriptionJobName=job_name,
        Media={'MediaFileUri': s3_uri},
        MediaFormat='wav',
        LanguageCode=language_code,
        OutputBucketName=text_output_bucket,
        OutputKey=text_output_key
    )
    
    print("start transcribe job response:"+str(response))
    job_name = response["TranscriptionJob"]["TranscriptionJobName"]
    
    # Wait for the transcription job to complete
    while True:
        status = transcribe.get_transcription_job(TranscriptionJobName=job_name)['TranscriptionJob']['TranscriptionJobStatus']
        if status in ['COMPLETED', 'FAILED']:
            break
        print("Transcription job still in progress...")
        time.sleep(1)
    
    # Get the transcript
    #transcript = transcribe.get_transcription_job(TranscriptionJobName=job_name)
    transcript_uri = transcribe.get_transcription_job(TranscriptionJobName=job_name)['TranscriptionJob']['Transcript']['TranscriptFileUri']
    print("transcript uri: " + str(transcript_uri))
    
    transcript_file_content = s3.get_object(Bucket=text_output_bucket, Key=text_output_key)['Body'].read().decode('utf-8')
    print(transcript_file_content)
    json_data = json.loads(transcript_file_content)

    # Extract the transcript value
    transcript_text = json_data['results']['transcripts'][0]['transcript']
    return transcript_text    

def process_audio(audio, history=[]):
    text = transcribe_func(audio)
    return predict(text, history)

with gr.Blocks(css="#chatbot{height:350px} .overflow-y-auto{height:500px}") as demo:
    chatbot = gr.Chatbot(elem_id="chatbot")
    state = gr.State([])

    with gr.Row():
        txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False)
        
    with gr.Row():
        audio_input = gr.Audio(source="microphone", type="filepath",  label="Audio Input")

    with gr.Row():
        audio_output = gr.Audio(type="filepath", label="Audio Output", elem_id="speaker", interactive=False)

        #audio_html = gr.HTML()

    txt.submit(predict, [txt, state], [chatbot, audio_output, state])
    audio_input.change(process_audio, [audio_input, state], [chatbot, audio_output, state])

demo.launch(debug=True)