Spaces:
Runtime error
Runtime error
File size: 10,850 Bytes
ea9d7db 23c1d69 ea9d7db 1f81e28 23c1d69 1f81e28 64a6762 a1e1de7 1f81e28 64a6762 a1e1de7 92aeb17 32e8a57 ea9d7db 634b74b ea9d7db 23c1d69 21d2d39 ea9d7db 21d2d39 32e8a57 21d2d39 9b3b4ad 32e8a57 21d2d39 ea9d7db 45301ee ea9d7db 58f0fe7 ad5a55f ea9d7db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import openai, os
import gradio as gr
import time
import boto3
import json
import numpy as np
import wave
import io
import os
from langchain import OpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationSummaryBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import HumanMessage
import subprocess
from contextlib import closing
import asyncio
# This example uses aiofile for asynchronous file reads.
# It's not a dependency of the project but can be installed
# with `pip install aiofile`.
import aiofile
from amazon_transcribe.client import TranscribeStreamingClient
from amazon_transcribe.handlers import TranscriptResultStreamHandler
from amazon_transcribe.model import TranscriptEvent
from amazon_transcribe.utils import apply_realtime_delay
def run_shell_cmd(command):
# Run a shell command
result = subprocess.run(command, shell=True, capture_output=True, text=True)
# Check the command output
if result.returncode == 0:
print("Command executed successfully")
print("Command output:")
print(result.stdout)
else:
print("Command failed")
print("Error message:")
print(result.stderr)
def wav_to_pcm(input_file, output_file):
cmd = "ffmpeg -i " + input_file + " -f s16le -ar 16000 -ac 1 -acodec pcm_s16le " + output_file
run_shell_cmd(cmd)
openai.api_key = os.environ["OPENAI_API_KEY"]
polly = boto3.client('polly', region_name='us-east-1')
s3 = boto3.client('s3')
transcribe = boto3.client('transcribe')
memory = ConversationSummaryBufferMemory(llm=ChatOpenAI(), max_token_limit=2048, k=3)
conversation = ConversationChain(
llm=OpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], max_tokens=2048, temperature=0.5),
memory=memory,
)
SAMPLE_RATE = 16000
BYTES_PER_SAMPLE = 2
CHANNEL_NUMS = 1
AUDIO_PATH = ''
CHUNK_SIZE = 1024 * 8
REGION = "us-west-2"
transcript_text = ''
transcriptions = []
class MyEventHandler(TranscriptResultStreamHandler):
def __init__(self, transcript_result_stream):
super().__init__(transcript_result_stream)
self.transcriptions = []
async def handle_transcript_event(self, transcript_event: TranscriptEvent):
# This handler can be implemented to handle transcriptions as needed.
# Here's an example to get started.
results = transcript_event.transcript.results
for result in results:
for alt in result.alternatives:
print(alt.transcript)
transcriptions.append(alt.transcript)
async def basic_transcribe():
# Setup up our client with our chosen AWS region
client = TranscribeStreamingClient(region=REGION)
# Start transcription to generate our async stream
stream = await client.start_stream_transcription(
language_code="zh-CN",
media_sample_rate_hz=SAMPLE_RATE,
media_encoding="pcm",
)
async def write_chunks():
# NOTE: For pre-recorded files longer than 5 minutes, the sent audio
# chunks should be rate limited to match the realtime bitrate of the
# audio stream to avoid signing issues.
async with aiofile.AIOFile(AUDIO_PATH, "rb") as afp:
reader = aiofile.Reader(afp, chunk_size=CHUNK_SIZE)
await apply_realtime_delay(
stream, reader, BYTES_PER_SAMPLE, SAMPLE_RATE, CHANNEL_NUMS
)
await stream.input_stream.end_stream()
# Instantiate our handler and start processing events
handler = MyEventHandler(stream.output_stream)
await asyncio.gather(write_chunks(), handler.handle_events())
# Retrieve the transcriptions from the handler
#transcriptions = handler.transcriptions
def download_file(bucket_name, object_key, file_path):
try:
# Download the file from S3
s3.download_file(bucket_name, object_key, file_path)
print(f"File downloaded successfully: {file_path}")
except Exception as e:
print(f"Error downloading file: {str(e)}")
def play_s3_voice(text):
response = polly.start_speech_synthesis_task(
OutputS3BucketName='lingo-audio-materials', #this bucket is in us-east-1
OutputS3KeyPrefix='answers/',
OutputFormat='mp3',
Text=text,
VoiceId='Zhiyu',
LanguageCode='cmn-CN',
Engine='neural'
)
# Print the task ID and status
task_id = response['SynthesisTask']['TaskId']
print('Task ID:', task_id)
while True:
task = polly.get_speech_synthesis_task(TaskId=task_id)
task_status = task['SynthesisTask']['TaskStatus']
if task_status == 'completed':
break
elif task_status == 'failed':
# Task failed
print('Task failed:', task['SynthesisTask']['TaskStatusReason'])
break
else:
print("Polly synthesis task is still in progress...")
time.sleep(1)
output_uri = response['SynthesisTask']['OutputUri']
print("polly output_uri:"+output_uri)
output_uri = output_uri.replace("https://", "")
# Split the URI into bucket name and key
results = output_uri.split("/")
bucket_name = results[1]
key_name = results[2]+'/'+results[3]
print("bucket name:"+bucket_name)
print("key name:"+key_name)
mp3_pre_signed_url = s3.generate_presigned_url('get_object',Params={'Bucket': bucket_name,'Key': key_name},ExpiresIn=3600)
print("mp3_pre_signed_url:"+mp3_pre_signed_url)
output_file = "/tmp/from-s3.mp3"
current_dir = os.getcwd()
#file_absolute_path = current_dir+'/'+output_file
print("current dir:"+current_dir)
print("output_file_location: "+output_file)
download_file(bucket_name, key_name, output_file)
#encoded_path = file_absolute_path.encode("utf-8")
#tmp_aud_file_url = output_file
#htm_audio = f'<audio><source src={tmp_aud_file_url} type="audio/mp3" autoplay></audio>'
#audio_htm = gr.HTML(htm_audio)
return output_file
def predict(input, history=[]):
history.append(input)
response = conversation.predict(input=input)
print("GPT response: "+response)
history.append(response)
audio_file = play_s3_voice(response)
responses = [(u,b) for u,b in zip(history[::2], history[1::2])]
print("all historical responses: "+str(responses))
return responses, audio_file, history
def transcribe_func_new(audio):
audio_file = open(audio, "rb")
wav_file = audio_file.name
print("wav_file: "+wav_file)
#transcript = openai.Audio.transcribe("whisper-1", audio_file)
#return transcript['text']
pcm_file = os.path.splitext(wav_file)[0] + ".pcm"
wav_to_pcm(wav_file, pcm_file)
if os.path.exists(pcm_file):
print("pcm file exists")
else:
print("pcm file does not exist")
AUDIO_PATH=pcm_file
loop = asyncio.get_event_loop()
loop.run_until_complete(basic_transcribe())
loop.close()
transcript_text = transcriptions[-1]
print("final transcribe script: "+transcript_text)
return transcript_text
def transcribe_func_old(audio):
audio_file = open(audio, "rb")
file_name = audio_file.name
#file_directory = os.path.dirname(audio_file.name)
print("audio_file: "+file_name)
#transcript = openai.Audio.transcribe("whisper-1", audio_file)
#return transcript['text']
# Set up the job parameters
job_name = "lingo-demo"
text_output_bucket = 'lingo-text-material' #this bucket is in us-west-1
text_output_key = 'transcriptions/question.json'
text_output_key = 'transcriptions/'+job_name+'.json'
language_code = 'zh-CN'
# Upload the file to an S3 bucket
audio_input_bucket_name = "lingo-audio-material"
audio_input_s3_key = "questions/tmp-question-from-huggingface.wav"
s3.upload_file(file_name, audio_input_bucket_name, audio_input_s3_key)
# Construct the S3 bucket URI
s3_uri = f"s3://{audio_input_bucket_name}/{audio_input_s3_key}"
response = transcribe.list_transcription_jobs()
# Iterate through the jobs and print their names
for job in response['TranscriptionJobSummaries']:
print(job['TranscriptionJobName'])
if job['TranscriptionJobName'] == job_name:
response = transcribe.delete_transcription_job(TranscriptionJobName=job_name)
print("delete transcribe job response:"+str(response))
# Create the transcription job
response = transcribe.start_transcription_job(
TranscriptionJobName=job_name,
Media={'MediaFileUri': s3_uri},
MediaFormat='wav',
LanguageCode=language_code,
OutputBucketName=text_output_bucket,
OutputKey=text_output_key
)
print("start transcribe job response:"+str(response))
job_name = response["TranscriptionJob"]["TranscriptionJobName"]
# Wait for the transcription job to complete
while True:
status = transcribe.get_transcription_job(TranscriptionJobName=job_name)['TranscriptionJob']['TranscriptionJobStatus']
if status in ['COMPLETED', 'FAILED']:
break
print("Transcription job still in progress...")
time.sleep(1)
# Get the transcript
#transcript = transcribe.get_transcription_job(TranscriptionJobName=job_name)
transcript_uri = transcribe.get_transcription_job(TranscriptionJobName=job_name)['TranscriptionJob']['Transcript']['TranscriptFileUri']
print("transcript uri: " + str(transcript_uri))
transcript_file_content = s3.get_object(Bucket=text_output_bucket, Key=text_output_key)['Body'].read().decode('utf-8')
print(transcript_file_content)
json_data = json.loads(transcript_file_content)
# Extract the transcript value
transcript_text = json_data['results']['transcripts'][0]['transcript']
return transcript_text
def process_audio(audio, history=[]):
text = transcribe_func_old(audio)
return predict(text, history)
with gr.Blocks(css="#chatbot{height:350px} .overflow-y-auto{height:500px}") as demo:
chatbot = gr.Chatbot(elem_id="chatbot")
state = gr.State([])
with gr.Row():
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False)
with gr.Row():
audio_input = gr.Audio(source="microphone", type="filepath", label="Audio Input")
with gr.Row():
audio_output = gr.Audio(type="filepath", label="Audio Output", elem_id="speaker", interactive=False)
#audio_html = gr.HTML()
txt.submit(predict, [txt, state], [chatbot, audio_output, state])
audio_input.change(process_audio, [audio_input, state], [chatbot, audio_output, state])
demo.launch(debug=True)
|