ai-bot-demo / app.py
EC2 Default User
xxx
458be33
raw
history blame
8.19 kB
import openai, os
import gradio as gr
import time
import boto3
import json
import numpy as np
import wave
import io
from langchain import OpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationSummaryBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import HumanMessage
openai.api_key = os.environ["OPENAI_API_KEY"]
polly = boto3.client('polly', region_name='us-east-1')
s3 = boto3.client('s3')
transcribe = boto3.client('transcribe')
memory = ConversationSummaryBufferMemory(llm=ChatOpenAI(), max_token_limit=2048)
conversation = ConversationChain(
llm=OpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], max_tokens=2048, temperature=0.5),
memory=memory,
)
def play_mp3(file_path):
pygame.mixer.init()
pygame.mixer.music.load(file_path)
pygame.mixer.music.play()
def play_mp3_audio(path):
with open(path, 'rb') as f:
audio_data = f.read()
gr.Audio(audio_data)
def play_wav_audio(wav_file):
# open the wave file
wf = wave.open(wav_file, 'rb')
# instantiate PyAudio
p = pyaudio.PyAudio()
# open a stream
stream = p.open(format=p.get_format_from_width(wf.getsampwidth()),
channels=wf.getnchannels(),
rate=wf.getframerate(),
output=True)
# read data from the wave file and play it
data = wf.readframes(1024)
while data:
stream.write(data)
data = wf.readframes(1024)
# close the stream and terminate PyAudio
stream.stop_stream()
stream.close()
p.terminate()
def download_file(bucket_name, object_key, file_path):
try:
# Download the file from S3
s3.download_file(bucket_name, object_key, file_path)
print(f"File downloaded successfully: {file_path}")
except Exception as e:
print(f"Error downloading file: {str(e)}")
def play_s3_voice(text):
response = polly.start_speech_synthesis_task(
OutputS3BucketName='lingo-audio-materials', #this bucket is in us-east-1
OutputS3KeyPrefix='answers/',
OutputFormat='mp3',
Text=text,
VoiceId='Zhiyu',
LanguageCode='cmn-CN',
Engine='neural'
)
# Print the task ID and status
task_id = response['SynthesisTask']['TaskId']
print('Task ID:', task_id)
while True:
task = polly.get_speech_synthesis_task(TaskId=task_id)
task_status = task['SynthesisTask']['TaskStatus']
if task_status == 'completed':
break
elif task_status == 'failed':
# Task failed
print('Task failed:', task['SynthesisTask']['TaskStatusReason'])
break
else:
print("Polly synthesis task is still in progress...")
time.sleep(1)
output_uri = response['SynthesisTask']['OutputUri']
print("polly output_uri:"+output_uri)
output_uri = output_uri.replace("https://", "")
# Split the URI into bucket name and key
results = output_uri.split("/")
bucket_name = results[1]
key_name = results[2]+'/'+results[3]
print("bucket name:"+bucket_name)
print("key name:"+key_name)
mp3_pre_signed_url = s3.generate_presigned_url('get_object',Params={'Bucket': bucket_name,'Key': key_name},ExpiresIn=3600)
print("mp3_pre_signed_url:"+mp3_pre_signed_url)
output_file = "/tmp/from-s3.mp3"
current_dir = os.getcwd()
#file_absolute_path = current_dir+'/'+output_file
print("current dir:"+current_dir)
print("output_file_location: "+output_file)
download_file(bucket_name, key_name, output_file)
#encoded_path = file_absolute_path.encode("utf-8")
#tmp_aud_file_url = output_file
#htm_audio = f'<audio><source src={tmp_aud_file_url} type="audio/mp3" autoplay></audio>'
#audio_htm = gr.HTML(htm_audio)
return output_file
def predict(input, history=[]):
history.append(input)
response = conversation.predict(input=input)
print("GPT response: "+response)
history.append(response)
audio_file = play_s3_voice(response)
responses = [(u,b) for u,b in zip(history[::2], history[1::2])]
print("all historical responses: "+str(responses))
return responses, audio_file, history
def predict_text_only(input, history=[]):
history.append(input)
response = conversation.predict(input=input)
audio_file = "/tmp/fake.mp3"
return response, audio_file, history
def transcribe_func(audio):
audio_file = open(audio, "rb")
file_name = audio_file.name
#file_directory = os.path.dirname(audio_file.name)
print("audio_file: "+file_name)
#transcript = openai.Audio.transcribe("whisper-1", audio_file)
#return transcript['text']
# Set up the job parameters
job_name = "lingo-demo"
text_output_bucket = 'lingo-text-material' #this bucket is in us-west-1
text_output_key = 'transcriptions/question.json'
text_output_key = 'transcriptions/'+job_name+'.json'
language_code = 'zh-CN'
# Upload the file to an S3 bucket
audio_input_bucket_name = "lingo-audio-material"
audio_input_s3_key = "questions/tmp-question-from-huggingface.wav"
s3.upload_file(file_name, audio_input_bucket_name, audio_input_s3_key)
# Construct the S3 bucket URI
s3_uri = f"s3://{audio_input_bucket_name}/{audio_input_s3_key}"
response = transcribe.list_transcription_jobs()
# Iterate through the jobs and print their names
for job in response['TranscriptionJobSummaries']:
print(job['TranscriptionJobName'])
if job['TranscriptionJobName'] == job_name:
response = transcribe.delete_transcription_job(TranscriptionJobName=job_name)
print("delete transcribe job response:"+str(response))
# Create the transcription job
response = transcribe.start_transcription_job(
TranscriptionJobName=job_name,
Media={'MediaFileUri': s3_uri},
MediaFormat='wav',
LanguageCode=language_code,
OutputBucketName=text_output_bucket,
OutputKey=text_output_key
)
print("start transcribe job response:"+str(response))
job_name = response["TranscriptionJob"]["TranscriptionJobName"]
# Wait for the transcription job to complete
while True:
status = transcribe.get_transcription_job(TranscriptionJobName=job_name)['TranscriptionJob']['TranscriptionJobStatus']
if status in ['COMPLETED', 'FAILED']:
break
print("Transcription job still in progress...")
time.sleep(1)
# Get the transcript
#transcript = transcribe.get_transcription_job(TranscriptionJobName=job_name)
transcript_uri = transcribe.get_transcription_job(TranscriptionJobName=job_name)['TranscriptionJob']['Transcript']['TranscriptFileUri']
print("transcript uri: " + str(transcript_uri))
transcript_file_content = s3.get_object(Bucket=text_output_bucket, Key=text_output_key)['Body'].read().decode('utf-8')
print(transcript_file_content)
json_data = json.loads(transcript_file_content)
# Extract the transcript value
transcript_text = json_data['results']['transcripts'][0]['transcript']
return transcript_text
def process_audio(audio, history=[]):
text = transcribe_func(audio)
return predict(text, history)
with gr.Blocks(css="#chatbot{height:350px} .overflow-y-auto{height:500px}") as demo:
chatbot = gr.Chatbot(elem_id="chatbot")
state = gr.State([])
with gr.Row():
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False)
with gr.Row():
audio_input = gr.Audio(source="microphone", type="filepath", label="Audio Input")
with gr.Row():
audio_output = gr.Audio(type="filepath", label="Audio Output", elem_id="speaker", interactive=False)
#audio_html = gr.HTML()
txt.submit(predict_text_only, [txt, state], [chatbot, audio_output, state])
audio_input.change(process_audio, [audio_input, state], [chatbot, audio_output, state])
demo.launch(debug=True)