# Copyright (c) Alibaba Cloud. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import copy import re import os from argparse import ArgumentParser from threading import Thread import spaces import gradio as gr from qwen_vl_utils import process_vision_info from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, TextIteratorStreamer DEFAULT_CKPT_PATH = 'Qwen/Qwen2-VL-7B-Instruct' def _get_args(): parser = ArgumentParser() parser.add_argument('-c', '--checkpoint-path', type=str, default=DEFAULT_CKPT_PATH, help='Checkpoint name or path, default to %(default)r') parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only') parser.add_argument('--share', action='store_true', default=False, help='Create a publicly shareable link for the interface.') parser.add_argument('--inbrowser', action='store_true', default=False, help='Automatically launch the interface in a new tab on the default browser.') parser.add_argument('--server-port', type=int, default=7860, help='Demo server port.') parser.add_argument('--server-name', type=str, default='127.0.0.1', help='Demo server name.') args = parser.parse_args() return args def _load_model_processor(args): if args.cpu_only: device_map = 'cpu' else: device_map = 'auto' # default: Load the model on the available device(s) # model = Qwen2VLForConditionalGeneration.from_pretrained(args.checkpoint_path, device_map=device_map) # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios. model = Qwen2VLForConditionalGeneration.from_pretrained(args.checkpoint_path, torch_dtype='auto', attn_implementation='flash_attention_2', device_map=device_map) processor = AutoProcessor.from_pretrained(args.checkpoint_path) return model, processor def _parse_text(text): lines = text.split('\n') lines = [line for line in lines if line != ''] count = 0 for i, line in enumerate(lines): if '```' in line: count += 1 items = line.split('`') if count % 2 == 1: lines[i] = f'
'
            else:
                lines[i] = '
' else: if i > 0: if count % 2 == 1: line = line.replace('`', r'\`') line = line.replace('<', '<') line = line.replace('>', '>') line = line.replace(' ', ' ') line = line.replace('*', '*') line = line.replace('_', '_') line = line.replace('-', '-') line = line.replace('.', '.') line = line.replace('!', '!') line = line.replace('(', '(') line = line.replace(')', ')') line = line.replace('$', '$') lines[i] = '
' + line text = ''.join(lines) return text def _remove_image_special(text): text = text.replace('', '').replace('', '') return re.sub(r'.*?(|$)', '', text) def is_video_file(filename): video_extensions = ['.mp4', '.avi', '.mkv', '.mov', '.wmv', '.flv', '.webm', '.mpeg'] return any(filename.lower().endswith(ext) for ext in video_extensions) def transform_messages(original_messages): transformed_messages = [] for message in original_messages: new_content = [] for item in message['content']: if 'image' in item: new_item = {'type': 'image', 'image': item['image']} elif 'text' in item: new_item = {'type': 'text', 'text': item['text']} elif 'video' in item: new_item = {'type': 'video', 'video': item['video']} else: continue new_content.append(new_item) new_message = {'role': message['role'], 'content': new_content} transformed_messages.append(new_message) return transformed_messages def _launch_demo(args, model, processor): @spaces.GPU def call_local_model(model, processor, messages): messages = transform_messages(messages) text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors='pt').to("cuda") tokenizer = processor.tokenizer streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) gen_kwargs = {'max_new_tokens': 512, 'streamer': streamer, **inputs} thread = Thread(target=model.generate, kwargs=gen_kwargs) thread.start() generated_text = '' for new_text in streamer: generated_text += new_text yield generated_text def create_predict_fn(): def predict(_chatbot, task_history): nonlocal model, processor chat_query = _chatbot[-1][0] query = task_history[-1][0] if len(chat_query) == 0: _chatbot.pop() task_history.pop() return _chatbot print('User: ' + _parse_text(query)) history_cp = copy.deepcopy(task_history) full_response = '' messages = [] content = [] for q, a in history_cp: if isinstance(q, (tuple, list)): if is_video_file(q[0]): content.append({'video': f'file://{q[0]}'}) else: content.append({'image': f'file://{q[0]}'}) else: content.append({'text': q}) messages.append({'role': 'user', 'content': content}) messages.append({'role': 'assistant', 'content': [{'text': a}]}) content = [] messages.pop() for response in call_local_model(model, processor, messages): _chatbot[-1] = (_parse_text(chat_query), _remove_image_special(_parse_text(response))) yield _chatbot full_response = _parse_text(response) task_history[-1] = (query, full_response) print('Qwen-VL-Chat: ' + _parse_text(full_response)) yield _chatbot return predict def create_regenerate_fn(): def regenerate(_chatbot, task_history): nonlocal model, processor if not task_history: return _chatbot item = task_history[-1] if item[1] is None: return _chatbot task_history[-1] = (item[0], None) chatbot_item = _chatbot.pop(-1) if chatbot_item[0] is None: _chatbot[-1] = (_chatbot[-1][0], None) else: _chatbot.append((chatbot_item[0], None)) _chatbot_gen = predict(_chatbot, task_history) for _chatbot in _chatbot_gen: yield _chatbot return regenerate predict = create_predict_fn() regenerate = create_regenerate_fn() def add_text(history, task_history, text): task_text = text history = history if history is not None else [] task_history = task_history if task_history is not None else [] history = history + [(_parse_text(text), None)] task_history = task_history + [(task_text, None)] return history, task_history, '' def add_file(history, task_history, file): history = history if history is not None else [] task_history = task_history if task_history is not None else [] history = history + [((file.name,), None)] task_history = task_history + [((file.name,), None)] return history, task_history def reset_user_input(): return gr.update(value='') def reset_state(task_history): task_history.clear() return [] with gr.Blocks() as demo: gr.Markdown("""\

""" ) gr.Markdown("""

Qwen2-VL
""") gr.Markdown("""\
This WebUI is based on Qwen2-VL, developed by Alibaba Cloud.
""") gr.Markdown("""
本WebUI基于Qwen2-VL。
""") chatbot = gr.Chatbot(label='Qwen2-VL', elem_classes='control-height', height=500) query = gr.Textbox(lines=2, label='Input') task_history = gr.State([]) with gr.Row(): addfile_btn = gr.UploadButton('📁 Upload (上传文件)', file_types=['image', 'video']) submit_btn = gr.Button('🚀 Submit (发送)') regen_btn = gr.Button('🤔️ Regenerate (重试)') empty_bin = gr.Button('🧹 Clear History (清除历史)') submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then(predict, [chatbot, task_history], [chatbot], show_progress=True) submit_btn.click(reset_user_input, [], [query]) empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True) regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True) addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True) gr.Markdown("""\ Note: This demo is governed by the original license of Qwen2-VL. \ We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, \ including hate speech, violence, pornography, deception, etc. \ (注:本演示受Qwen2-VL的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,\ 包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)""") demo.queue().launch( share=args.share, inbrowser=args.inbrowser, server_port=args.server_port, server_name=args.server_name, ) def main(): args = _get_args() model, processor = _load_model_processor(args) _launch_demo(args, model, processor) if __name__ == '__main__': main()