Spaces:
Running
Running
import os | |
import sys | |
if "APP_PATH" in os.environ: | |
app_path = os.path.abspath(os.environ["APP_PATH"]) | |
if os.getcwd() != app_path: | |
# fix sys.path for import | |
os.chdir(app_path) | |
if app_path not in sys.path: | |
sys.path.append(app_path) | |
import gradio as gr | |
from typing import List | |
import pypdfium2 | |
from pypdfium2 import PdfiumError | |
from surya.detection import batch_text_detection | |
from surya.input.pdflines import get_page_text_lines, get_table_blocks | |
from surya.layout import batch_layout_detection | |
from surya.model.detection.model import load_model, load_processor | |
from surya.model.layout.model import load_model as load_layout_model | |
from surya.model.layout.processor import load_processor as load_layout_processor | |
from surya.model.recognition.model import load_model as load_rec_model | |
from surya.model.recognition.processor import load_processor as load_rec_processor | |
from surya.model.table_rec.model import load_model as load_table_model | |
from surya.model.table_rec.processor import load_processor as load_table_processor | |
from surya.model.ocr_error.model import load_model as load_ocr_error_model, load_tokenizer as load_ocr_error_processor | |
from surya.postprocessing.heatmap import draw_polys_on_image, draw_bboxes_on_image | |
from surya.ocr import run_ocr | |
from surya.postprocessing.text import draw_text_on_image | |
from PIL import Image | |
from surya.languages import CODE_TO_LANGUAGE | |
from surya.input.langs import replace_lang_with_code | |
from surya.schema import OCRResult, TextDetectionResult, LayoutResult, TableResult | |
from surya.settings import settings | |
from surya.tables import batch_table_recognition | |
from surya.postprocessing.util import rescale_bbox | |
from pdftext.extraction import plain_text_output | |
from surya.ocr_error import batch_ocr_error_detection | |
def load_det_cached(): | |
return load_model(), load_processor() | |
def load_rec_cached(): | |
return load_rec_model(), load_rec_processor() | |
def load_layout_cached(): | |
return load_layout_model(), load_layout_processor() | |
def load_table_cached(): | |
return load_table_model(), load_table_processor() | |
def load_ocr_error_cached(): | |
return load_ocr_error_model(), load_ocr_error_processor() | |
# | |
def run_ocr_errors(pdf_file, page_count, sample_len=512, max_samples=10, max_pages=15): | |
# Sample the text from the middle of the PDF | |
page_middle = page_count // 2 | |
page_range = range(max(page_middle - max_pages, 0), min(page_middle + max_pages, page_count)) | |
text = plain_text_output(pdf_file, page_range=page_range) | |
sample_gap = len(text) // max_samples | |
if len(text) == 0 or sample_gap == 0: | |
return "This PDF has no text or very little text", ["no text"] | |
if sample_gap < sample_len: | |
sample_gap = sample_len | |
# Split the text into samples for the model | |
samples = [] | |
for i in range(0, len(text), sample_gap): | |
samples.append(text[i:i + sample_len]) | |
results = batch_ocr_error_detection(samples, ocr_error_model, ocr_error_processor) | |
label = "This PDF has good text." | |
if results.labels.count("bad") / len(results.labels) > .2: | |
label = "This PDF may have garbled or bad OCR text." | |
return label, results.labels | |
# | |
def text_detection(img) -> (Image.Image, TextDetectionResult): | |
pred = batch_text_detection([img], det_model, det_processor)[0] | |
polygons = [p.polygon for p in pred.bboxes] | |
det_img = draw_polys_on_image(polygons, img.copy()) | |
return det_img, pred | |
# | |
def layout_detection(img) -> (Image.Image, LayoutResult): | |
pred = batch_layout_detection([img], layout_model, layout_processor)[0] | |
polygons = [p.polygon for p in pred.bboxes] | |
labels = [f"{p.label}-{p.position}" for p in pred.bboxes] | |
layout_img = draw_polys_on_image(polygons, img.copy(), labels=labels, label_font_size=18) | |
return layout_img, pred | |
# | |
def table_recognition(img, highres_img, filepath, page_idx: int, use_pdf_boxes: bool, skip_table_detection: bool) -> (Image.Image, List[TableResult]): | |
if skip_table_detection: | |
layout_tables = [(0, 0, highres_img.size[0], highres_img.size[1])] | |
table_imgs = [highres_img] | |
else: | |
_, layout_pred = layout_detection(img) | |
layout_tables_lowres = [l.bbox for l in layout_pred.bboxes if l.label == "Table"] | |
table_imgs = [] | |
layout_tables = [] | |
for tb in layout_tables_lowres: | |
highres_bbox = rescale_bbox(tb, img.size, highres_img.size) | |
table_imgs.append( | |
highres_img.crop(highres_bbox) | |
) | |
layout_tables.append(highres_bbox) | |
try: | |
page_text = get_page_text_lines(filepath, [page_idx], [highres_img.size])[0] | |
table_bboxes = get_table_blocks(layout_tables, page_text, highres_img.size) | |
except PdfiumError: | |
# This happens when we try to get text from an image | |
table_bboxes = [[] for _ in layout_tables] | |
if not use_pdf_boxes or any(len(tb) == 0 for tb in table_bboxes): | |
det_results = batch_text_detection(table_imgs, det_model, det_processor) | |
table_bboxes = [[{"bbox": tb.bbox, "text": None} for tb in det_result.bboxes] for det_result in det_results] | |
table_preds = batch_table_recognition(table_imgs, table_bboxes, table_model, table_processor) | |
table_img = img.copy() | |
for results, table_bbox in zip(table_preds, layout_tables): | |
adjusted_bboxes = [] | |
labels = [] | |
colors = [] | |
for item in results.rows + results.cols: | |
adjusted_bboxes.append([ | |
(item.bbox[0] + table_bbox[0]), | |
(item.bbox[1] + table_bbox[1]), | |
(item.bbox[2] + table_bbox[0]), | |
(item.bbox[3] + table_bbox[1]) | |
]) | |
labels.append(item.label) | |
if hasattr(item, "row_id"): | |
colors.append("blue") | |
else: | |
colors.append("red") | |
table_img = draw_bboxes_on_image(adjusted_bboxes, highres_img, labels=labels, label_font_size=18, color=colors) | |
return table_img, table_preds | |
# Function for OCR | |
def ocr(img, highres_img, langs: List[str]) -> (Image.Image, OCRResult): | |
replace_lang_with_code(langs) | |
img_pred = run_ocr([img], [langs], det_model, det_processor, rec_model, rec_processor, highres_images=[highres_img])[0] | |
bboxes = [l.bbox for l in img_pred.text_lines] | |
text = [l.text for l in img_pred.text_lines] | |
rec_img = draw_text_on_image(bboxes, text, img.size, langs, has_math="_math" in langs) | |
return rec_img, img_pred | |
def open_pdf(pdf_file): | |
return pypdfium2.PdfDocument(pdf_file) | |
def count_pdf(pdf_file): | |
doc = open_pdf(pdf_file) | |
return len(doc) | |
def get_page_image(pdf_file, page_num, dpi=96): | |
doc = open_pdf(pdf_file) | |
renderer = doc.render( | |
pypdfium2.PdfBitmap.to_pil, | |
page_indices=[page_num - 1], | |
scale=dpi / 72, | |
) | |
png = list(renderer)[0] | |
png_image = png.convert("RGB") | |
return png_image | |
def get_uploaded_image(in_file): | |
return Image.open(in_file).convert("RGB") | |
# Load models if not already loaded in reload mode | |
if 'det_model' not in globals(): | |
det_model, det_processor = load_det_cached() | |
rec_model, rec_processor = load_rec_cached() | |
layout_model, layout_processor = load_layout_cached() | |
table_model, table_processor = load_table_cached() | |
ocr_error_model, ocr_error_processor = load_ocr_error_cached() | |
with gr.Blocks(title="Surya") as demo: | |
gr.Markdown(""" | |
# Surya OCR Demo | |
This app will let you try surya, a multilingual OCR model. It supports text detection + layout analysis in any language, and text recognition in 90+ languages. | |
Notes: | |
- This works best on documents with printed text. | |
- Preprocessing the image (e.g. increasing contrast) can improve results. | |
- If OCR doesn't work, try changing the resolution of your image (increase if below 2048px width, otherwise decrease). | |
- This supports 90+ languages, see [here](https://github.com/VikParuchuri/surya/tree/master/surya/languages.py) for a full list. | |
Find the project [here](https://github.com/VikParuchuri/surya). | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
in_file = gr.File(label="PDF file or image:", file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".webp"]) | |
in_num = gr.Slider(label="Page number", minimum=1, maximum=100, value=1, step=1) | |
in_img = gr.Image(label="Select page of Image", type="pil", sources=None) | |
text_det_btn = gr.Button("Run Text Detection") | |
layout_det_btn = gr.Button("Run Layout Analysis") | |
lang_dd = gr.Dropdown(label="Languages", choices=sorted(list(CODE_TO_LANGUAGE.values())), multiselect=True, max_choices=4, info="Select the languages in the image (if known) to improve OCR accuracy. Optional.") | |
text_rec_btn = gr.Button("Run OCR") | |
use_pdf_boxes_ckb = gr.Checkbox(label="Use PDF table boxes", value=True, info="Table recognition only: Use the bounding boxes from the PDF file vs text detection model.") | |
skip_table_detection_ckb = gr.Checkbox(label="Skip table detection", value=False, info="Table recognition only: Skip table detection and treat the whole image/page as a table.") | |
table_rec_btn = gr.Button("Run Table Rec") | |
ocr_errors_btn = gr.Button("Run bad PDF text detection") | |
with gr.Column(): | |
result_img = gr.Image(label="Result image") | |
result_json = gr.JSON(label="Result json") | |
def show_image(file, num=1): | |
if file.endswith('.pdf'): | |
count = count_pdf(file) | |
img = get_page_image(file, num) | |
return [ | |
gr.update(visible=True, maximum=count), | |
gr.update(value=img)] | |
else: | |
img = get_uploaded_image(file) | |
return [ | |
gr.update(visible=False), | |
gr.update(value=img)] | |
in_file.upload( | |
fn=show_image, | |
inputs=[in_file], | |
outputs=[in_num, in_img], | |
) | |
in_num.change( | |
fn=show_image, | |
inputs=[in_file, in_num], | |
outputs=[in_num, in_img], | |
) | |
# Run Text Detection | |
def text_det_img(pil_image): | |
det_img, pred = text_detection(pil_image) | |
return det_img, pred.model_dump(exclude=["heatmap", "affinity_map"]) | |
text_det_btn.click( | |
fn=text_det_img, | |
inputs=[in_img], | |
outputs=[result_img, result_json] | |
) | |
# Run layout | |
def layout_det_img(pil_image): | |
layout_img, pred = layout_detection(pil_image) | |
return layout_img, pred.model_dump(exclude=["segmentation_map"]) | |
layout_det_btn.click( | |
fn=layout_det_img, | |
inputs=[in_img], | |
outputs=[result_img, result_json] | |
) | |
# Run OCR | |
def text_rec_img(pil_image, in_file, page_number, languages): | |
if in_file.endswith('.pdf'): | |
pil_image_highres = get_page_image(in_file, page_number, dpi=settings.IMAGE_DPI_HIGHRES) | |
else: | |
pil_image_highres = pil_image | |
rec_img, pred = ocr(pil_image, pil_image_highres, languages) | |
return rec_img, pred.model_dump() | |
text_rec_btn.click( | |
fn=text_rec_img, | |
inputs=[in_img, in_file, in_num, lang_dd], | |
outputs=[result_img, result_json] | |
) | |
# Run Table Recognition | |
def table_rec_img(pil_image, in_file, page_number, use_pdf_boxes, skip_table_detection): | |
if in_file.endswith('.pdf'): | |
pil_image_highres = get_page_image(in_file, page_number, dpi=settings.IMAGE_DPI_HIGHRES) | |
else: | |
pil_image_highres = pil_image | |
table_img, pred = table_recognition(pil_image, pil_image_highres, in_file, page_number - 1 if page_number else None, use_pdf_boxes, skip_table_detection) | |
return table_img, [p.model_dump() for p in pred] | |
table_rec_btn.click( | |
fn=table_rec_img, | |
inputs=[in_img, in_file, in_num, use_pdf_boxes_ckb, skip_table_detection_ckb], | |
outputs=[result_img, result_json] | |
) | |
# Run bad PDF text detection | |
def ocr_errors_pdf(file, page_count, sample_len=512, max_samples=10, max_pages=15): | |
if file.endswith('.pdf'): | |
count = count_pdf(file) | |
else: | |
raise gr.Error("This feature only works with PDFs.", duration=5) | |
label, results = run_ocr_errors(file, count) | |
return gr.update(label="Result json:" + label, value=results) | |
ocr_errors_btn.click( | |
fn=ocr_errors_pdf, | |
inputs=[in_file, in_num, use_pdf_boxes_ckb, skip_table_detection_ckb], | |
outputs=[result_json] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |