Sonic / sonic.py
xiaozhongji
update
612b064
raw
history blame
11.9 kB
import os
import torch
import torch.utils.checkpoint
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
from tqdm import tqdm
import cv2
from diffusers import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor
from src.utils.util import save_videos_grid, seed_everything
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor
from src.models.base.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel, add_ip_adapters
from src.pipelines.pipeline_sonic import SonicPipeline
from src.models.audio_adapter.audio_proj import AudioProjModel
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
from src.dataset.face_align.align import AlignImage
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
def test(
pipe,
config,
wav_enc,
audio_pe,
audio2bucket,
image_encoder,
width,
height,
batch
):
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.unsqueeze(0).to(pipe.device).float()
ref_img = batch['ref_img']
clip_img = batch['clip_images']
face_mask = batch['face_mask']
image_embeds = image_encoder(
clip_img
).image_embeds
audio_feature = batch['audio_feature']
audio_len = batch['audio_len']
step = int(config.step)
window = 3000
audio_prompts = []
last_audio_prompts = []
for i in range(0, audio_feature.shape[-1], window):
audio_prompt = wav_enc.encoder(audio_feature[:,:,i:i+window], output_hidden_states=True).hidden_states
last_audio_prompt = wav_enc.encoder(audio_feature[:,:,i:i+window]).last_hidden_state
last_audio_prompt = last_audio_prompt.unsqueeze(-2)
audio_prompt = torch.stack(audio_prompt, dim=2)
audio_prompts.append(audio_prompt)
last_audio_prompts.append(last_audio_prompt)
audio_prompts = torch.cat(audio_prompts, dim=1)
audio_prompts = audio_prompts[:,:audio_len*2]
audio_prompts = torch.cat([torch.zeros_like(audio_prompts[:,:4]), audio_prompts, torch.zeros_like(audio_prompts[:,:6])], 1)
last_audio_prompts = torch.cat(last_audio_prompts, dim=1)
last_audio_prompts = last_audio_prompts[:,:audio_len*2]
last_audio_prompts = torch.cat([torch.zeros_like(last_audio_prompts[:,:24]), last_audio_prompts, torch.zeros_like(last_audio_prompts[:,:26])], 1)
ref_tensor_list = []
audio_tensor_list = []
uncond_audio_tensor_list = []
motion_buckets = []
for i in tqdm(range(audio_len//step)):
audio_clip = audio_prompts[:,i*2*step:i*2*step+10].unsqueeze(0)
audio_clip_for_bucket = last_audio_prompts[:,i*2*step:i*2*step+50].unsqueeze(0)
motion_bucket = audio2bucket(audio_clip_for_bucket, image_embeds)
motion_bucket = motion_bucket * 16 + 16
motion_buckets.append(motion_bucket[0])
cond_audio_clip = audio_pe(audio_clip).squeeze(0)
uncond_audio_clip = audio_pe(torch.zeros_like(audio_clip)).squeeze(0)
ref_tensor_list.append(ref_img[0])
audio_tensor_list.append(cond_audio_clip[0])
uncond_audio_tensor_list.append(uncond_audio_clip[0])
video = pipe(
ref_img,
clip_img,
face_mask,
audio_tensor_list,
uncond_audio_tensor_list,
motion_buckets,
height=height,
width=width,
num_frames=len(audio_tensor_list),
decode_chunk_size=config.decode_chunk_size,
motion_bucket_scale=config.motion_bucket_scale,
fps=config.fps,
noise_aug_strength=config.noise_aug_strength,
min_guidance_scale1=config.min_appearance_guidance_scale, # 1.0,
max_guidance_scale1=config.max_appearance_guidance_scale,
min_guidance_scale2=config.audio_guidance_scale, # 1.0,
max_guidance_scale2=config.audio_guidance_scale,
overlap=config.overlap,
shift_offset=config.shift_offset,
frames_per_batch=config.n_sample_frames,
num_inference_steps=config.num_inference_steps,
i2i_noise_strength=config.i2i_noise_strength
).frames
# Concat it with pose tensor
# pose_tensor = torch.stack(pose_tensor_list,1).unsqueeze(0)
video = (video*0.5 + 0.5).clamp(0, 1)
video = torch.cat([video.to(pipe.device)], dim=0).cpu()
return video
class Sonic():
config_file = os.path.join(BASE_DIR, 'config/inference/sonic.yaml')
config = OmegaConf.load(config_file)
def __init__(self,
device_id=0,
enable_interpolate_frame=True,
):
config = self.config
config.use_interframe = enable_interpolate_frame
device = 'cuda:{}'.format(device_id) if device_id > -1 else 'cpu'
config.pretrained_model_name_or_path = os.path.join(BASE_DIR, config.pretrained_model_name_or_path)
vae = AutoencoderKLTemporalDecoder.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="vae",
variant="fp16")
val_noise_scheduler = EulerDiscreteScheduler.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="scheduler")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="image_encoder",
variant="fp16")
unet = UNetSpatioTemporalConditionModel.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="unet",
variant="fp16")
add_ip_adapters(unet, [32], [config.ip_audio_scale])
audio2token = AudioProjModel(seq_len=10, blocks=5, channels=384, intermediate_dim=1024, output_dim=1024, context_tokens=32).to(device)
audio2bucket = Audio2bucketModel(seq_len=50, blocks=1, channels=384, clip_channels=1024, intermediate_dim=1024, output_dim=1, context_tokens=2).to(device)
unet_checkpoint_path = os.path.join(BASE_DIR, config.unet_checkpoint_path)
audio2token_checkpoint_path = os.path.join(BASE_DIR, config.audio2token_checkpoint_path)
audio2bucket_checkpoint_path = os.path.join(BASE_DIR, config.audio2bucket_checkpoint_path)
unet.load_state_dict(
torch.load(unet_checkpoint_path, map_location="cpu"),
strict=True,
)
audio2token.load_state_dict(
torch.load(audio2token_checkpoint_path, map_location="cpu"),
strict=True,
)
audio2bucket.load_state_dict(
torch.load(audio2bucket_checkpoint_path, map_location="cpu"),
strict=True,
)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
elif config.weight_dtype == "fp32":
weight_dtype = torch.float32
elif config.weight_dtype == "bf16":
weight_dtype = torch.bfloat16
else:
raise ValueError(
f"Do not support weight dtype: {config.weight_dtype} during training"
)
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/')).to(device).eval()
whisper.requires_grad_(False)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/'))
det_path = os.path.join(BASE_DIR, os.path.join(BASE_DIR, 'checkpoints/yoloface_v5m.pt'))
self.face_det = AlignImage(device, det_path=det_path)
if config.use_interframe:
rife = RIFEModel(device=device)
rife.load_model(os.path.join(BASE_DIR, 'checkpoints', 'RIFE/'))
self.rife = rife
image_encoder.to(weight_dtype)
vae.to(weight_dtype)
unet.to(weight_dtype)
pipe = SonicPipeline(
unet=unet,
image_encoder=image_encoder,
vae=vae,
scheduler=val_noise_scheduler,
)
pipe = pipe.to(device=device, dtype=weight_dtype)
self.pipe = pipe
self.whisper = whisper
self.audio2token = audio2token
self.audio2bucket = audio2bucket
self.image_encoder = image_encoder
self.device = device
print('init done')
def preprocess(self,
image_path, expand_ratio=1.0):
face_image = cv2.imread(image_path)
h, w = face_image.shape[:2]
_, _, bboxes = self.face_det(face_image, maxface=True)
face_num = len(bboxes)
bbox = []
if face_num > 0:
x1, y1, ww, hh = bboxes[0]
x2, y2 = x1 + ww, y1 + hh
bbox = x1, y1, x2, y2
bbox_s = process_bbox(bbox, expand_radio=expand_ratio, height=h, width=w)
return {
'face_num': face_num,
'crop_bbox': bbox_s,
}
def crop_image(self,
input_image_path,
output_image_path,
crop_bbox):
face_image = cv2.imread(input_image_path)
crop_image = face_image[crop_bbox[1]:crop_bbox[3], crop_bbox[0]:crop_bbox[2]]
cv2.imwrite(output_image_path, crop_image)
@torch.no_grad()
def process(self,
image_path,
audio_path,
output_path,
min_resolution=512,
inference_steps=25,
dynamic_scale=1.0,
keep_resolution=False,
seed=None):
config = self.config
device = self.device
pipe = self.pipe
whisper = self.whisper
audio2token = self.audio2token
audio2bucket = self.audio2bucket
image_encoder = self.image_encoder
# specific parameters
if seed:
config.seed = seed
config.num_inference_steps = inference_steps
config.motion_bucket_scale = dynamic_scale
seed_everything(config.seed)
video_path = output_path.replace('.mp4', '_noaudio.mp4')
audio_video_path = output_path
imSrc_ = Image.open(image_path).convert('RGB')
raw_w, raw_h = imSrc_.size
test_data = image_audio_to_tensor(self.face_det, self.feature_extractor, image_path, audio_path, limit=config.frame_num, image_size=min_resolution, area=config.area)
if test_data is None:
return -1
height, width = test_data['ref_img'].shape[-2:]
if keep_resolution:
resolution = f'{raw_w//2*2}x{raw_h//2*2}'
else:
resolution = f'{width}x{height}'
video = test(
pipe,
config,
wav_enc=whisper,
audio_pe=audio2token,
audio2bucket=audio2bucket,
image_encoder=image_encoder,
width=width,
height=height,
batch=test_data,
)
if config.use_interframe:
rife = self.rife
out = video.to(device)
results = []
video_len = out.shape[2]
for idx in tqdm(range(video_len-1), ncols=0):
I1 = out[:, :, idx]
I2 = out[:, :, idx+1]
middle = rife.inference(I1, I2).clamp(0, 1).detach()
results.append(out[:, :, idx])
results.append(middle)
results.append(out[:, :, video_len-1])
video = torch.stack(results, 2).cpu()
save_videos_grid(video, video_path, n_rows=video.shape[0], fps=config.fps * 2 if config.use_interframe else config.fps)
os.system(f"ffmpeg -i '{video_path}' -i '{audio_path}' -s {resolution} -vcodec libx264 -acodec aac -crf 18 -shortest '{audio_video_path}' -y; rm '{video_path}'")
return 0