File size: 3,923 Bytes
8ccf632
 
 
 
 
709e8b8
06f0278
 
8ccf632
 
709e8b8
bc0adb1
8ccf632
06f0278
8ccf632
40023fc
709e8b8
54192f0
 
8ccf632
 
709e8b8
 
 
 
 
1e787e4
8ccf632
 
709e8b8
8ccf632
709e8b8
 
 
8ccf632
 
 
 
 
e2944a6
8ccf632
 
 
 
 
 
709e8b8
 
 
8ccf632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
709e8b8
8ccf632
 
 
 
 
 
 
 
 
 
 
b213a9c
 
 
 
 
ceb48e8
 
b213a9c
8ccf632
 
 
 
 
 
709e8b8
8ccf632
 
 
709e8b8
 
 
 
8ccf632
 
 
 
2b62414
709e8b8
 
 
8ccf632
 
709e8b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import FluxPipeline

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = FluxPipeline.from_pretrained("Shakker-Labs/AWPortrait-FL", torch_dtype=torch.bfloat16).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU(duration=190)
def infer(prompt, seed=42, randomize_seed=False, width=768, height=1024, guidance_scale=3.5, num_inference_steps=24, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
        prompt=prompt, 
        width=width,
        height=height,
        num_inference_steps=num_inference_steps, 
        generator=generator,
        guidance_scale=guidance_scale
    ).images[0] 
    return image, seed

examples = [
    "close up portrait, Amidst the interplay of light and shadows in a photography studio,a soft spotlight traces the contours of a face,highlighting a figure clad in a sleek black turtleneck...",
    "a cinematic portrait of an elegant elderly man with a wise expression...",
    "a dramatic close-up shot of a warrior princess with fierce eyes..."
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# AWPortrait-FL
12B param flow transformer guidance-distilled from [AWPortrait-FL](https://huggingface.co/Shakker-Labs/AWPortrait-FL)  
[[non-commercial license](https://huggingface.co/Shakker-Labs/AWPortrait-FL/blob/main/LICENSE.md)]
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=24,
                )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

demo.launch()