File size: 3,923 Bytes
8ccf632 709e8b8 06f0278 8ccf632 709e8b8 bc0adb1 8ccf632 06f0278 8ccf632 40023fc 709e8b8 54192f0 8ccf632 709e8b8 1e787e4 8ccf632 709e8b8 8ccf632 709e8b8 8ccf632 e2944a6 8ccf632 709e8b8 8ccf632 709e8b8 8ccf632 b213a9c ceb48e8 b213a9c 8ccf632 709e8b8 8ccf632 709e8b8 8ccf632 2b62414 709e8b8 8ccf632 709e8b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import FluxPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxPipeline.from_pretrained("Shakker-Labs/AWPortrait-FL", torch_dtype=torch.bfloat16).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU(duration=190)
def infer(prompt, seed=42, randomize_seed=False, width=768, height=1024, guidance_scale=3.5, num_inference_steps=24, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
return image, seed
examples = [
"close up portrait, Amidst the interplay of light and shadows in a photography studio,a soft spotlight traces the contours of a face,highlighting a figure clad in a sleek black turtleneck...",
"a cinematic portrait of an elegant elderly man with a wise expression...",
"a dramatic close-up shot of a warrior princess with fierce eyes..."
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# AWPortrait-FL
12B param flow transformer guidance-distilled from [AWPortrait-FL](https://huggingface.co/Shakker-Labs/AWPortrait-FL)
[[non-commercial license](https://huggingface.co/Shakker-Labs/AWPortrait-FL/blob/main/LICENSE.md)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=24,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch()
|