from functools import lru_cache | |
import numpy as np | |
import torch | |
from sentence_transformers import SentenceTransformer | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
class SBert: | |
def __init__(self, path): | |
print(f'Loading model from {path} ...') | |
self.model = SentenceTransformer(path, device=DEVICE) | |
def __call__(self, x) -> np.ndarray: | |
y = self.model.encode(x) | |
return y | |