dev / app.py
aiforhumans
s
4fd05d8
import gradio as gr
from huggingface_hub import InferenceClient
SYSTEM_MESSAGE_DEFAULT = "You are a friendly Chatbot."
MAX_TOKENS_DEFAULT = 512
TEMPERATURE_DEFAULT = 0.7
TOP_P_DEFAULT = 0.95
inference_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
user_message: str,
conversation_history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
"""
Respond to a user message given the conversation history and other parameters.
Args:
user_message (str): The user's message.
conversation_history (list[tuple[str, str]]): The conversation history.
system_message (str): The system message to display at the top of the chat interface.
max_tokens (int): The maximum number of tokens to generate in the response.
temperature (float): The temperature to use when generating text.
top_p (float): The top-p value to use when generating text.
Yields:
list[tuple[str, str]]: Updated conversation history with the new assistant response.
"""
messages = [{"role": "system", "content": system_message}]
# Prepare messages for the model based on the history
for user_input, assistant_response in conversation_history:
if user_input:
messages.append({"role": "user", "content": user_input})
if assistant_response:
messages.append({"role": "assistant", "content": assistant_response})
# Append the new user message
messages.append({"role": "user", "content": user_message})
# Initialize response string
response = ""
# Stream the completion from the inference client
for message in inference_client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
# Continuously yield updated history with the new response
updated_history = conversation_history + [(user_message, response)]
yield updated_history
# Chatbot interface definition
chatbot_interface = gr.ChatInterface(
fn=respond,
chatbot=gr.Chatbot(height=600),
additional_inputs=[
gr.Textbox(
value=SYSTEM_MESSAGE_DEFAULT,
label="System message",
),
gr.Slider(
minimum=1,
maximum=2048,
value=MAX_TOKENS_DEFAULT,
step=1,
label="Max new tokens",
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=TEMPERATURE_DEFAULT,
step=0.1,
label="Temperature",
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=TOP_P_DEFAULT,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
chatbot_interface.launch()