# Copyright (c) Alibaba Cloud. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """A simple web interactive chat demo based on gradio.""" from argparse import ArgumentParser from pathlib import Path import copy import gradio as gr import os import re import secrets import tempfile from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import GenerationConfig # from modelscope.hub.api import HubApi from pydub import AudioSegment import os YOUR_ACCESS_TOKEN = os.getenv('YOUR_ACCESS_TOKEN') # api = HubApi() # api.login(YOUR_ACCESS_TOKEN) # DEFAULT_CKPT_PATH = snapshot_download('qwen/Qwen-Audio-Chat') DEFAULT_CKPT_PATH = "xun/Qwen-Audio-Chat-Int4" def _get_args(): parser = ArgumentParser() parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH, help="Checkpoint name or path, default to %(default)r") parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only") parser.add_argument("--share", action="store_true", default=False, help="Create a publicly shareable link for the interface.") parser.add_argument("--inbrowser", action="store_true", default=False, help="Automatically launch the interface in a new tab on the default browser.") parser.add_argument("--server-port", type=int, default=7860, help="Demo server port.") parser.add_argument("--server-name", type=str, default="0.0.0.0", help="Demo server name.") args = parser.parse_args() return args def _load_model_tokenizer(args): tokenizer = AutoTokenizer.from_pretrained( args.checkpoint_path, trust_remote_code=True, resume_download=True, token=YOUR_ACCESS_TOKEN ) if args.cpu_only: device_map = "cpu" else: device_map = "cuda" model = AutoModelForCausalLM.from_pretrained( args.checkpoint_path, device_map=device_map, trust_remote_code=True, resume_download=True, token=YOUR_ACCESS_TOKEN ).eval() model.generation_config = GenerationConfig.from_pretrained( args.checkpoint_path, trust_remote_code=True, resume_download=True, token=YOUR_ACCESS_TOKEN ) return model, tokenizer def _parse_text(text): lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 for i, line in enumerate(lines): if "```" in line: count += 1 items = line.split("`") if count % 2 == 1: lines[i] = f'
'
            else:
                lines[i] = f"
" else: if i > 0: if count % 2 == 1: line = line.replace("`", r"\`") line = line.replace("<", "<") line = line.replace(">", ">") line = line.replace(" ", " ") line = line.replace("*", "*") line = line.replace("_", "_") line = line.replace("-", "-") line = line.replace(".", ".") line = line.replace("!", "!") line = line.replace("(", "(") line = line.replace(")", ")") line = line.replace("$", "$") lines[i] = "
" + line text = "".join(lines) return text def _launch_demo(args, model, tokenizer): uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str( Path(tempfile.gettempdir()) / "gradio" ) def predict(_chatbot, task_history): query = task_history[-1][0] print("User: " + _parse_text(query)) history_cp = copy.deepcopy(task_history) full_response = "" history_filter = [] audio_idx = 1 pre = "" global last_audio for i, (q, a) in enumerate(history_cp): if isinstance(q, (tuple, list)): last_audio = q[0] q = f'Audio {audio_idx}: ' pre += q + '\n' audio_idx += 1 else: pre += q history_filter.append((pre, a)) pre = "" history, message = history_filter[:-1], history_filter[-1][0] response, history = model.chat(tokenizer, message, history=history) ts_pattern = r"<\|\d{1,2}\.\d+\|>" all_time_stamps = re.findall(ts_pattern, response) print(response) if (len(all_time_stamps) > 0) and (len(all_time_stamps) % 2 ==0) and last_audio: ts_float = [ float(t.replace("<|","").replace("|>","")) for t in all_time_stamps] ts_float_pair = [ts_float[i:i + 2] for i in range(0,len(all_time_stamps),2)] # 读取音频文件 format = os.path.splitext(last_audio)[-1].replace(".","") audio_file = AudioSegment.from_file(last_audio, format=format) chat_response_t = response.replace("<|", "").replace("|>", "") chat_response = chat_response_t temp_dir = secrets.token_hex(20) temp_dir = Path(uploaded_file_dir) / temp_dir temp_dir.mkdir(exist_ok=True, parents=True) # 截取音频文件 for pair in ts_float_pair: audio_clip = audio_file[pair[0] * 1000: pair[1] * 1000] # 保存音频文件 name = f"tmp{secrets.token_hex(5)}.{format}" filename = temp_dir / name audio_clip.export(filename, format=format) _chatbot[-1] = (_parse_text(query), chat_response) _chatbot.append((None, (str(filename),))) else: _chatbot[-1] = (_parse_text(query), response) full_response = _parse_text(response) task_history[-1] = (query, full_response) print("Qwen-Audio-Chat: " + _parse_text(full_response)) return _chatbot def regenerate(_chatbot, task_history): if not task_history: return _chatbot item = task_history[-1] if item[1] is None: return _chatbot task_history[-1] = (item[0], None) chatbot_item = _chatbot.pop(-1) if chatbot_item[0] is None: _chatbot[-1] = (_chatbot[-1][0], None) else: _chatbot.append((chatbot_item[0], None)) return predict(_chatbot, task_history) def add_text(history, task_history, text): history = history + [(_parse_text(text), None)] task_history = task_history + [(text, None)] return history, task_history, "" def add_file(history, task_history, file): history = history + [((file.name,), None)] task_history = task_history + [((file.name,), None)] return history, task_history def add_mic(history, task_history, file): if file is None: return history, task_history os.rename(file, file + '.wav') print("add_mic file:", file) print("add_mic history:", history) print("add_mic task_history:", task_history) # history = history + [((file.name,), None)] # task_history = task_history + [((file.name,), None)] task_history = task_history + [((file + '.wav',), None)] history = history + [((file + '.wav',), None)] print("task_history", task_history) return history, task_history def reset_user_input(): return gr.update(value="") def reset_state(task_history): task_history.clear() return [] with gr.Blocks() as demo: gr.Markdown("""

""") ## todo gr.Markdown("""

Qwen-Audio-Chat Bot
""") gr.Markdown( """\
This WebUI is based on Qwen-Audio-Chat, developed by Alibaba Cloud.
""") gr.Markdown("""\
Qwen-Audio 🤖 | 🤗  | Qwen-Audio-Chat 🤖 | 🤗  |  Github
""") chatbot = gr.Chatbot(label='Qwen-Audio-Chat', elem_classes="control-height", height=750) query = gr.Textbox(lines=2, label='Input') task_history = gr.State([]) # mic = gr.Audio(source="microphone", type="filepath") mic = gr.Audio(type="filepath") with gr.Row(): empty_bin = gr.Button("🧹 Clear History") submit_btn = gr.Button("🚀 Submit") regen_btn = gr.Button("🤔️ Regenerate") addfile_btn = gr.UploadButton("📁 Upload", file_types=["audio"]) mic.change(add_mic, [chatbot, task_history, mic], [chatbot, task_history]) submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then( predict, [chatbot, task_history], [chatbot], show_progress=True ) submit_btn.click(reset_user_input, [], [query]) empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True) regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True) addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True) gr.Markdown("""\ Note: This demo is governed by the original license of Qwen-Audio. \ We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, \ including hate speech, violence, pornography, deception, etc. \ """) demo.queue().launch( share=args.share, inbrowser=args.inbrowser, server_port=args.server_port, server_name=args.server_name, # file_directories=["/tmp/"] ) def main(): args = _get_args() model, tokenizer = _load_model_tokenizer(args) _launch_demo(args, model, tokenizer) if __name__ == '__main__': main()