Update app.py
Browse files
app.py
CHANGED
@@ -1,157 +1,62 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
selected="Bill Depth (mm)",
|
37 |
-
),
|
38 |
-
ui.input_checkbox_group(
|
39 |
-
"species", "Filter by species", species, selected=species
|
40 |
-
),
|
41 |
-
ui.hr(),
|
42 |
-
ui.input_switch("by_species", "Show species", value=True),
|
43 |
-
ui.input_switch("show_margins", "Show marginal plots", value=True),
|
44 |
-
),
|
45 |
-
ui.output_ui("value_boxes"),
|
46 |
-
x.ui.output_plot("scatter", fill=True),
|
47 |
-
ui.help_text(
|
48 |
-
"Artwork by ",
|
49 |
-
ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
|
50 |
-
class_="text-end",
|
51 |
-
),
|
52 |
-
fill=True,
|
53 |
-
fillable=True,
|
54 |
-
),
|
55 |
-
)
|
56 |
-
|
57 |
-
|
58 |
-
def server(input: Inputs, output: Outputs, session: Session):
|
59 |
-
@reactive.Calc
|
60 |
-
def filtered_df() -> pd.DataFrame:
|
61 |
-
"""Returns a Pandas data frame that includes only the desired rows"""
|
62 |
-
|
63 |
-
# This calculation "req"uires that at least one species is selected
|
64 |
-
req(len(input.species()) > 0)
|
65 |
-
|
66 |
-
# Filter the rows so we only include the desired species
|
67 |
-
return df[df["Species"].isin(input.species())]
|
68 |
-
|
69 |
-
@output
|
70 |
-
@render.plot
|
71 |
-
def scatter():
|
72 |
-
"""Generates a plot for Shiny to display to the user"""
|
73 |
-
|
74 |
-
# The plotting function to use depends on whether margins are desired
|
75 |
-
plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot
|
76 |
-
|
77 |
-
plotfunc(
|
78 |
-
data=filtered_df(),
|
79 |
-
x=input.xvar(),
|
80 |
-
y=input.yvar(),
|
81 |
-
palette=palette,
|
82 |
-
hue="Species" if input.by_species() else None,
|
83 |
-
hue_order=species,
|
84 |
-
legend=False,
|
85 |
)
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str):
|
93 |
-
return x.ui.value_box(
|
94 |
-
title,
|
95 |
-
count,
|
96 |
-
{"class_": "pt-1 pb-0"},
|
97 |
-
showcase=x.ui.bind_fill_role(
|
98 |
-
ui.tags.img(
|
99 |
-
{"style": "object-fit:contain;"},
|
100 |
-
src=showcase_img,
|
101 |
-
),
|
102 |
-
item=True,
|
103 |
-
),
|
104 |
-
theme_color=None,
|
105 |
-
style=f"background-color: {bgcol};",
|
106 |
-
height="90px",
|
107 |
-
full_screen=True,
|
108 |
-
)
|
109 |
-
|
110 |
-
if not input.by_species():
|
111 |
-
return penguin_value_box(
|
112 |
-
"Penguins",
|
113 |
-
len(df.index),
|
114 |
-
bg_palette["default"],
|
115 |
-
# Artwork by @allison_horst
|
116 |
-
showcase_img="penguins.png",
|
117 |
-
)
|
118 |
-
|
119 |
-
value_boxes = [
|
120 |
-
penguin_value_box(
|
121 |
-
name,
|
122 |
-
len(df[df["Species"] == name]),
|
123 |
-
bg_palette[name],
|
124 |
-
# Artwork by @allison_horst
|
125 |
-
showcase_img=f"{name}.png",
|
126 |
-
)
|
127 |
-
for name in species
|
128 |
-
# Only include boxes for _selected_ species
|
129 |
-
if name in input.species()
|
130 |
-
]
|
131 |
-
|
132 |
-
return x.ui.layout_column_wrap(1 / len(value_boxes), *value_boxes)
|
133 |
-
|
134 |
|
135 |
-
#
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
"Gentoo": colors[2],
|
143 |
-
"default": sns.color_palette()[0], # type: ignore
|
144 |
-
}
|
145 |
|
146 |
-
|
147 |
-
# Use `sns.set_style("whitegrid")` to help find approx alpha value
|
148 |
-
for name, col in palette.items():
|
149 |
-
# Adjusted n_colors until `axe` accessibility did not complain about color contrast
|
150 |
-
bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1]) # type: ignore
|
151 |
|
|
|
|
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
server,
|
156 |
-
static_assets=str(www_dir),
|
157 |
-
)
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
from flask import Flask, request, jsonify, send_file
|
4 |
+
from gradio_client import Client
|
5 |
+
from openai_chat_module import OpenaiChatModule
|
6 |
+
from text2speech import VITSApiTTS
|
7 |
+
|
8 |
+
app = Flask(__name__)
|
9 |
+
|
10 |
+
@app.route('/process_speech', methods=['POST'])
|
11 |
+
def upload_and_return_temp_file():
|
12 |
+
# try:
|
13 |
+
if 'audio' not in request.files:
|
14 |
+
return jsonify({"error": "No audio file provided"})
|
15 |
+
|
16 |
+
file = request.files['audio']
|
17 |
+
filename = request.form.get('filename')
|
18 |
+
modelid = request.form.get('modelid', default=2)
|
19 |
+
|
20 |
+
if not filename:
|
21 |
+
return jsonify({"error": "No filename parameter provided"})
|
22 |
+
|
23 |
+
# Create a temporary directory
|
24 |
+
temp_dir = tempfile.mkdtemp()
|
25 |
+
|
26 |
+
# Save the audio file to the temporary directory with the specified filename and .wav extension
|
27 |
+
destination_path = os.path.join(temp_dir, f"{filename}.wav")
|
28 |
+
file.save(destination_path)
|
29 |
+
print(destination_path)
|
30 |
+
# from gradio_client import Client
|
31 |
+
|
32 |
+
client = Client()
|
33 |
+
result = client.predict(
|
34 |
+
destination_path, # str (filepath or URL to file) in 'Input' Audio component
|
35 |
+
api_name="/predict"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
)
|
37 |
|
38 |
+
openai_chat_module = OpenaiChatModule('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')
|
39 |
+
text = openai_chat_module.chat_with_origin_model(result)
|
40 |
+
print(text)
|
41 |
+
vits_tts = VITSApiTTS(modelid)
|
42 |
+
audio_data = vits_tts.text_to_speech_and_play(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Save audio data as a file in the temporary directory
|
45 |
+
audio_file_path = os.path.join(temp_dir, ""+filename+".mp3")
|
46 |
+
with open(audio_file_path, "wb") as f:
|
47 |
+
f.write(audio_data)
|
48 |
+
print(audio_file_path)
|
49 |
+
# Return the audio file as a response with the correct content type
|
50 |
+
response = send_file(audio_file_path, mimetype="audio/mp3")
|
51 |
|
52 |
+
# # # Cleanup: Delete temporary files and directory
|
53 |
+
os.remove(destination_path)
|
54 |
+
os.rmdir(temp_dir)
|
|
|
|
|
|
|
55 |
|
56 |
+
return response
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# except Exception as e:
|
59 |
+
# return jsonify({"error": str(e)})
|
60 |
|
61 |
+
if __name__ == '__main__':
|
62 |
+
app.run(host='0.0.0.0', port=5000, debug=True)
|
|
|
|
|
|