parth parekh
commited on
Commit
β’
4460c63
1
Parent(s):
22bc6d2
added chat endpoint
Browse files
main.py
CHANGED
@@ -6,7 +6,7 @@ from pydantic import BaseModel
|
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
from dotenv import load_dotenv
|
8 |
from accelerate import Accelerator
|
9 |
-
|
10 |
# Load environment variables from a .env file (useful for local development)
|
11 |
load_dotenv()
|
12 |
|
@@ -59,45 +59,43 @@ app = FastAPI(
|
|
59 |
docs_url="/", # URL for Swagger docs
|
60 |
redoc_url="/doc" # URL for ReDoc docs
|
61 |
)
|
62 |
-
# Set your Hugging Face token from environment variable
|
63 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
64 |
|
|
|
65 |
MODEL = "meta-llama/Llama-3.2-1B-Instruct"
|
66 |
-
|
67 |
-
# Auto-select CPU or GPU
|
68 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
69 |
print(f"Using device: {device}")
|
70 |
|
71 |
-
# Set PyTorch to use all available CPU cores if running on CPU
|
72 |
torch.set_num_threads(multiprocessing.cpu_count())
|
73 |
-
|
74 |
-
# Initialize Accelerator for managing device allocation
|
75 |
accelerator = Accelerator()
|
76 |
|
77 |
-
# Load model and tokenizer
|
78 |
tokenizer = AutoTokenizer.from_pretrained(MODEL, token=HF_TOKEN, use_fast=True)
|
79 |
model = AutoModelForCausalLM.from_pretrained(
|
80 |
MODEL,
|
81 |
token=HF_TOKEN,
|
82 |
torch_dtype=torch.float16,
|
83 |
-
device_map=device
|
84 |
-
low_cpu_mem_usage=True,
|
85 |
-
|
86 |
)
|
87 |
|
88 |
-
# Prepare model for multi-device setup with accelerate
|
89 |
model, tokenizer = accelerator.prepare(model, tokenizer)
|
90 |
-
|
91 |
-
# Pydantic model for input
|
92 |
class PromptRequest(BaseModel):
|
93 |
prompt: str
|
94 |
max_new_tokens: int = 100
|
95 |
temperature: float = 0.7
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
@app.post("/generate/")
|
98 |
async def generate_text(request: PromptRequest):
|
99 |
inputs = tokenizer(request.prompt, return_tensors="pt").to(device)
|
100 |
-
|
101 |
with torch.no_grad():
|
102 |
outputs = model.generate(
|
103 |
**inputs,
|
@@ -106,6 +104,36 @@ async def generate_text(request: PromptRequest):
|
|
106 |
do_sample=False,
|
107 |
pad_token_id=tokenizer.eos_token_id
|
108 |
)
|
109 |
-
|
110 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
111 |
return {"response": response}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
from dotenv import load_dotenv
|
8 |
from accelerate import Accelerator
|
9 |
+
from typing import List, Tuple
|
10 |
# Load environment variables from a .env file (useful for local development)
|
11 |
load_dotenv()
|
12 |
|
|
|
59 |
docs_url="/", # URL for Swagger docs
|
60 |
redoc_url="/doc" # URL for ReDoc docs
|
61 |
)
|
|
|
|
|
62 |
|
63 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
64 |
MODEL = "meta-llama/Llama-3.2-1B-Instruct"
|
|
|
|
|
65 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
66 |
print(f"Using device: {device}")
|
67 |
|
|
|
68 |
torch.set_num_threads(multiprocessing.cpu_count())
|
|
|
|
|
69 |
accelerator = Accelerator()
|
70 |
|
|
|
71 |
tokenizer = AutoTokenizer.from_pretrained(MODEL, token=HF_TOKEN, use_fast=True)
|
72 |
model = AutoModelForCausalLM.from_pretrained(
|
73 |
MODEL,
|
74 |
token=HF_TOKEN,
|
75 |
torch_dtype=torch.float16,
|
76 |
+
device_map=device
|
|
|
|
|
77 |
)
|
78 |
|
|
|
79 |
model, tokenizer = accelerator.prepare(model, tokenizer)
|
80 |
+
# Pydantic models for request validation
|
|
|
81 |
class PromptRequest(BaseModel):
|
82 |
prompt: str
|
83 |
max_new_tokens: int = 100
|
84 |
temperature: float = 0.7
|
85 |
|
86 |
+
class ChatRequest(BaseModel):
|
87 |
+
message: str
|
88 |
+
history: List[Tuple[str, str]] = []
|
89 |
+
max_new_tokens: int = 100
|
90 |
+
temperature: float = 0.7
|
91 |
+
system_prompt: str = "You are a helpful assistant."
|
92 |
+
|
93 |
+
|
94 |
+
# Endpoints
|
95 |
@app.post("/generate/")
|
96 |
async def generate_text(request: PromptRequest):
|
97 |
inputs = tokenizer(request.prompt, return_tensors="pt").to(device)
|
98 |
+
|
99 |
with torch.no_grad():
|
100 |
outputs = model.generate(
|
101 |
**inputs,
|
|
|
104 |
do_sample=False,
|
105 |
pad_token_id=tokenizer.eos_token_id
|
106 |
)
|
107 |
+
|
108 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
109 |
return {"response": response}
|
110 |
+
|
111 |
+
@app.post("/chat/")
|
112 |
+
async def chat(request: ChatRequest):
|
113 |
+
conversation = [
|
114 |
+
{"role": "system", "content": request.system_prompt}
|
115 |
+
]
|
116 |
+
for human, assistant in request.history:
|
117 |
+
conversation.extend([
|
118 |
+
{"role": "user", "content": human},
|
119 |
+
{"role": "assistant", "content": assistant}
|
120 |
+
])
|
121 |
+
conversation.append({"role": "user", "content": request.message})
|
122 |
+
|
123 |
+
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(device)
|
124 |
+
|
125 |
+
with torch.no_grad():
|
126 |
+
outputs = model.generate(
|
127 |
+
input_ids,
|
128 |
+
max_new_tokens=request.max_new_tokens,
|
129 |
+
temperature=request.temperature,
|
130 |
+
do_sample=False,
|
131 |
+
pad_token_id=tokenizer.eos_token_id
|
132 |
+
)
|
133 |
+
|
134 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
135 |
+
|
136 |
+
# Extract only the assistant's response
|
137 |
+
assistant_response = response.split("Assistant:")[-1].strip()
|
138 |
+
|
139 |
+
return {"response": assistant_response}
|