parth parekh
commited on
Commit
β’
9e1ad54
1
Parent(s):
7c83ecd
added more speed
Browse files- main.py +14 -3
- requirements.txt +3 -1
main.py
CHANGED
@@ -1,33 +1,45 @@
|
|
1 |
import os
|
2 |
import torch
|
|
|
3 |
from fastapi import FastAPI, Request
|
4 |
from pydantic import BaseModel
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
from dotenv import load_dotenv
|
|
|
7 |
|
8 |
# Load environment variables from a .env file (useful for local development)
|
9 |
load_dotenv()
|
10 |
|
11 |
# Initialize FastAPI app
|
12 |
-
app = FastAPI(description="Use the Llama-3.2-1B-Instruct model using the
|
13 |
|
14 |
# Set your Hugging Face token from environment variable
|
15 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
16 |
|
17 |
MODEL = "meta-llama/Llama-3.2-1B-Instruct"
|
18 |
|
|
|
19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
print(f"Using device: {device}")
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# Load model and tokenizer
|
23 |
tokenizer = AutoTokenizer.from_pretrained(MODEL, token=HF_TOKEN)
|
24 |
model = AutoModelForCausalLM.from_pretrained(
|
25 |
MODEL,
|
26 |
token=HF_TOKEN,
|
27 |
-
torch_dtype=torch.float16, # Use
|
28 |
device_map="auto"
|
29 |
)
|
30 |
|
|
|
|
|
|
|
31 |
# Pydantic model for input
|
32 |
class PromptRequest(BaseModel):
|
33 |
prompt: str
|
@@ -49,4 +61,3 @@ async def generate_text(request: PromptRequest):
|
|
49 |
|
50 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
51 |
return {"response": response}
|
52 |
-
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
+
import multiprocessing
|
4 |
from fastapi import FastAPI, Request
|
5 |
from pydantic import BaseModel
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
from dotenv import load_dotenv
|
8 |
+
from accelerate import Accelerator
|
9 |
|
10 |
# Load environment variables from a .env file (useful for local development)
|
11 |
load_dotenv()
|
12 |
|
13 |
# Initialize FastAPI app
|
14 |
+
app = FastAPI(description="Use the Llama-3.2-1B-Instruct model using the API", docs_url="/", redoc_url="/doc")
|
15 |
|
16 |
# Set your Hugging Face token from environment variable
|
17 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
18 |
|
19 |
MODEL = "meta-llama/Llama-3.2-1B-Instruct"
|
20 |
|
21 |
+
# Auto-select CPU or GPU
|
22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
print(f"Using device: {device}")
|
24 |
|
25 |
+
# Set PyTorch to use all available CPU cores if running on CPU
|
26 |
+
torch.set_num_threads(multiprocessing.cpu_count())
|
27 |
+
|
28 |
+
# Initialize Accelerator for managing device allocation
|
29 |
+
accelerator = Accelerator()
|
30 |
+
|
31 |
# Load model and tokenizer
|
32 |
tokenizer = AutoTokenizer.from_pretrained(MODEL, token=HF_TOKEN)
|
33 |
model = AutoModelForCausalLM.from_pretrained(
|
34 |
MODEL,
|
35 |
token=HF_TOKEN,
|
36 |
+
torch_dtype=torch.bfloat16 if device == 'cpu' else torch.float16, # Use bfloat16 for CPUs, float16 for GPUs
|
37 |
device_map="auto"
|
38 |
)
|
39 |
|
40 |
+
# Prepare model for multi-device setup with accelerate
|
41 |
+
model, tokenizer = accelerator.prepare(model, tokenizer)
|
42 |
+
|
43 |
# Pydantic model for input
|
44 |
class PromptRequest(BaseModel):
|
45 |
prompt: str
|
|
|
61 |
|
62 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
63 |
return {"response": response}
|
|
requirements.txt
CHANGED
@@ -3,4 +3,6 @@ transformers
|
|
3 |
torch
|
4 |
uvicorn
|
5 |
python-dotenv
|
6 |
-
|
|
|
|
|
|
3 |
torch
|
4 |
uvicorn
|
5 |
python-dotenv
|
6 |
+
optimum[onnxruntime] # For CPU optimizations with ONNX Runtime
|
7 |
+
accelerate # For managing multi-device setup (CPU/GPU)
|
8 |
+
gunicorn # For running multiple workers
|