File size: 5,862 Bytes
1d42b83
 
 
 
9a59d7a
 
 
 
 
 
 
1d42b83
 
 
 
 
 
 
 
c431f44
9d3974d
c431f44
8cf99f3
 
c431f44
 
 
 
d65dd81
6193207
 
d65dd81
f2977fa
5b067c5
a2468a2
8cf99f3
5b067c5
 
c431f44
 
5b067c5
c411dc2
c431f44
 
 
 
 
a3b4f26
 
c431f44
9a59d7a
6ee92d0
1fb1f41
 
1d42b83
26889b2
9a59d7a
 
 
 
 
 
 
 
26889b2
 
a3b4f26
 
1d42b83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6801c63
1d42b83
 
6801c63
1d42b83
 
 
ce28eed
1d42b83
26889b2
c431f44
51aabb2
c431f44
5b067c5
51aabb2
5b067c5
26889b2
1d42b83
a70df5d
26889b2
 
a70df5d
1d42b83
 
a00a3a2
1d42b83
a00a3a2
1d42b83
 
 
 
 
 
 
 
 
 
 
a00a3a2
1d42b83
a3b4f26
1d42b83
 
 
 
 
 
 
 
a3b4f26
1d42b83
26889b2
c431f44
 
 
 
 
 
 
 
5b067c5
 
 
 
 
 
 
 
 
26889b2
05b9609
 
 
 
 
1d42b83
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import string
import gradio as gr
import requests
import torch
from models.VLE import VLEForVQA, VLEProcessor, VLEForVQAPipeline
from PIL import Image

model_name="hfl/vle-base-for-vqa"
model = VLEForVQA.from_pretrained(model_name)
vle_processor = VLEProcessor.from_pretrained(model_name)
vqa_pipeline = VLEForVQAPipeline(model=model, device='cpu', vle_processor=vle_processor)


from transformers import BlipForQuestionAnswering, BlipProcessor

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
model_vqa = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large").to(device)

from transformers import BlipProcessor, BlipForConditionalGeneration

cap_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
cap_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")



def caption(input_image):
    inputs = cap_processor(input_image, return_tensors="pt")
    inputs["num_beams"] = 1
    inputs['num_return_sequences'] =1
    out = cap_model.generate(**inputs)
    return "\n".join(cap_processor.batch_decode(out, skip_special_tokens=True))
import openai
import os
openai.api_key= os.getenv('openai_appkey') 
def gpt3(question,vqa_answer,caption):
    prompt=caption+"\n"+question+"\n"+vqa_answer+"\n Tell me the right answer."
    response = openai.Completion.create(
    engine="text-davinci-003",
    prompt=prompt,
    max_tokens=30,
    n=1,
    stop=None,
    temperature=0.7,
    )
    answer = response.choices[0].text.strip()
    # return "input_text:\n"+prompt+"\n\n output_answer:\n"+answer
    return answer

def vle(input_image,input_text):
    vqa_answers = vqa_pipeline({"image":input_image, "question":input_text}, top_k=4)
    # return [" ".join([str(value) for key,value in vqa.items()] )for vqa in vqa_answers]
    return [vqa['answer'] for vqa in vqa_answers]
def inference_chat(input_image,input_text):
    cap=caption(input_image)
    # inputs = processor(images=input_image, text=input_text,return_tensors="pt")
    # inputs["max_length"] = 10
    # inputs["num_beams"] = 5
    # inputs['num_return_sequences'] =4
    # out = model_vqa.generate(**inputs)
    # out=processor.batch_decode(out, skip_special_tokens=True)

    out=vle(input_image,input_text)
    vqa="\n".join(out)
    gpt3_out=gpt3(input_text,vqa,cap)
    gpt3_out1=gpt3(input_text,'',cap)
    return out[0], gpt3_out,gpt3_out1
    
with gr.Blocks(
    css="""
    .message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px}
    #component-21 > div.wrap.svelte-w6rprc {height: 600px;}
    """
) as iface:
    state = gr.State([])
    #caption_output = None
    #gr.Markdown(title)
    #gr.Markdown(description)
    #gr.Markdown(article)

    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil",label="VQA Image Input")
            with gr.Row():
                with gr.Column(scale=1):
                    chat_input = gr.Textbox(lines=1, label="VQA Quesiton Input")
                    with gr.Row():
                        clear_button = gr.Button(value="Clear", interactive=True)
                        submit_button = gr.Button(
                            value="VQA", interactive=True, variant="primary"
                        )
                        '''
                    cap_submit_button = gr.Button(
                            value="Submit_CAP", interactive=True, variant="primary"
                        )
                    gpt3_submit_button = gr.Button(
                            value="Submit_GPT3", interactive=True, variant="primary"
                        )
                        '''
        with gr.Column():
            caption_output_v1 = gr.Textbox(lines=0, label="CAP+LLM")
            caption_output = gr.Textbox(lines=0, label="VQA ")
            gpt3_output_v1 = gr.Textbox(lines=0, label="VQA+LLM")
            
            
        image_input.change(
            lambda: ("", [],"","",""),
            [],
            [ caption_output, state,caption_output,gpt3_output_v1,caption_output_v1],
            queue=False,
        )
        chat_input.submit(
                    inference_chat,
                    [
                        image_input,
                        chat_input,
                    ],
                    [ caption_output],
                )
        clear_button.click(
                        lambda: ("", [],"","",""),
                        [],
                        [chat_input,  state,caption_output,gpt3_output_v1,caption_output_v1],
                        queue=False,
                    )
        submit_button.click(
                        inference_chat,
                        [
                            image_input,
                            chat_input,
                        ],
                        [caption_output,gpt3_output_v1,caption_output_v1],
                    )
        '''
        cap_submit_button.click(
                        caption,
                        [
                            image_input,
                   
                        ],
                        [caption_output_v1],
                    )
        gpt3_submit_button.click(
                        gpt3,
                        [
                            chat_input,
                           caption_output ,
                            caption_output_v1,
                        ],
                        [gpt3_output_v1],
                    )
        '''
    examples=[['bird.jpeg',"How many birds are there in the tree?"]]
    examples = gr.Examples(
       examples=examples,
       inputs=[image_input, chat_input],
    )

iface.queue(concurrency_count=1, api_open=False, max_size=10)
iface.launch(enable_queue=True)