ziqingyang commited on
Commit
5cec2d8
·
1 Parent(s): 67aa591

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -3
app.py CHANGED
@@ -36,7 +36,7 @@ import os
36
  openai.api_key= os.getenv('openai_appkey')
37
  def gpt3_short(question,vqa_answer,caption):
38
  vqa_answer,vqa_score=vqa_answer
39
- prompt="prompt: This is a picture of Caption: "+caption+". Question: "+question+" VQA model predicts:"+"A: "+vqa_answer[0]+"socre:"+str(vqa_score[0])+\
40
  " B: "+vqa_answer[1]+" score:"+str(vqa_score[1])+" C: "+vqa_answer[2]+" score:"+str(vqa_score[2])+\
41
  " D: "+vqa_answer[3]+'score:'+str(vqa_score[3])+\
42
  ". Choose A if it is not in conflict with the description of the picture and A's score is bigger than 0.8; otherwise choose the B, C or D based on the description. Answer with A or B or C or D."
@@ -98,7 +98,17 @@ def inference_chat(input_image,input_text):
98
  gpt3_out=gpt3(input_text,vqa,cap)
99
  gpt3_out1=gpt3_short(input_text,out,cap)
100
  return out[0][0], gpt3_out,gpt3_out1
101
- title = """<h1 align="center">VQA</h1>"""
 
 
 
 
 
 
 
 
 
 
102
  with gr.Blocks(
103
  css="""
104
  .message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px}
@@ -108,7 +118,7 @@ with gr.Blocks(
108
  state = gr.State([])
109
  #caption_output = None
110
  gr.Markdown(title)
111
- # gr.Markdown(description)
112
  #gr.Markdown(article)
113
 
114
  with gr.Row():
 
36
  openai.api_key= os.getenv('openai_appkey')
37
  def gpt3_short(question,vqa_answer,caption):
38
  vqa_answer,vqa_score=vqa_answer
39
+ prompt="prompt: This is the caption of a picture: "+caption+". Question: "+question+" VQA model predicts:"+"A: "+vqa_answer[0]+"socre:"+str(vqa_score[0])+\
40
  " B: "+vqa_answer[1]+" score:"+str(vqa_score[1])+" C: "+vqa_answer[2]+" score:"+str(vqa_score[2])+\
41
  " D: "+vqa_answer[3]+'score:'+str(vqa_score[3])+\
42
  ". Choose A if it is not in conflict with the description of the picture and A's score is bigger than 0.8; otherwise choose the B, C or D based on the description. Answer with A or B or C or D."
 
98
  gpt3_out=gpt3(input_text,vqa,cap)
99
  gpt3_out1=gpt3_short(input_text,out,cap)
100
  return out[0][0], gpt3_out,gpt3_out1
101
+ title = """# VQA with VLE and LLM"""
102
+ description = """We demonstrate three visual question answering systems built with VLE and LLM:
103
+
104
+ * VQA: The image and the question are fed into a VQA model (VLEForVQA) and the model predicts the answer.
105
+
106
+ * VQA + LLM (short answer): The captioning model generates a caption of the image. We feed the caption, the question, and the answer candidates predicted by the VQA model to the LLM, and ask the LLM to select the most reasonable answer from the candidates.
107
+
108
+ * VQA + LLM (long answer): The pipeline is the same as VQA + LLM (short answer), except that the answer is freely generated by the LLM and not limited to VQA candidates.
109
+
110
+ For more details about VLE and the VQA pipeline, see [http://vle.hfl-rc.com](http://vle.hfl-rc.com)"""
111
+
112
  with gr.Blocks(
113
  css="""
114
  .message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px}
 
118
  state = gr.State([])
119
  #caption_output = None
120
  gr.Markdown(title)
121
+ gr.Markdown(description)
122
  #gr.Markdown(article)
123
 
124
  with gr.Row():