Spaces:
Runtime error
Runtime error
File size: 14,076 Bytes
d6d3a5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import numpy as np
import torch
"""
Useful geometric operations, e.g. Perspective projection and a differentiable Rodrigues formula
Parts of the code are taken from https://github.com/MandyMo/pytorch_HMR
"""
def perspective_to_weak_perspective_torch(
perspective_camera,
focal_length,
img_res,
):
# Convert Weak Perspective Camera [s, tx, ty] to camera translation [tx, ty, tz]
# in 3D given the bounding box size
# This camera translation can be used in a full perspective projection
# if isinstance(focal_length, torch.Tensor):
# focal_length = focal_length[:, 0]
tx = perspective_camera[:, 0]
ty = perspective_camera[:, 1]
tz = perspective_camera[:, 2]
weak_perspective_camera = torch.stack(
[2 * focal_length / (img_res * tz + 1e-9), tx, ty],
dim=-1,
)
return weak_perspective_camera
def convert_perspective_to_weak_perspective(
perspective_camera,
focal_length,
img_res,
):
# Convert Weak Perspective Camera [s, tx, ty] to camera translation [tx, ty, tz]
# in 3D given the bounding box size
# This camera translation can be used in a full perspective projection
# if isinstance(focal_length, torch.Tensor):
# focal_length = focal_length[:, 0]
weak_perspective_camera = torch.stack(
[
2 * focal_length / (img_res * perspective_camera[:, 2] + 1e-9),
perspective_camera[:, 0],
perspective_camera[:, 1],
],
dim=-1,
)
return weak_perspective_camera
def convert_weak_perspective_to_perspective(
weak_perspective_camera, focal_length, img_res
):
# Convert Weak Perspective Camera [s, tx, ty] to camera translation [tx, ty, tz]
# in 3D given the bounding box size
# This camera translation can be used in a full perspective projection
# if isinstance(focal_length, torch.Tensor):
# focal_length = focal_length[:, 0]
perspective_camera = torch.stack(
[
weak_perspective_camera[:, 1],
weak_perspective_camera[:, 2],
2 * focal_length / (img_res * weak_perspective_camera[:, 0] + 1e-9),
],
dim=-1,
)
return perspective_camera
def get_default_cam_t(f, img_res):
cam = torch.tensor([[5.0, 0.0, 0.0]])
return convert_weak_perspective_to_perspective(cam, f, img_res)
def estimate_translation_np(S, joints_2d, joints_conf, focal_length, img_size):
"""Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
Input:
S: (25, 3) 3D joint locations
joints: (25, 3) 2D joint locations and confidence
Returns:
(3,) camera translation vector
"""
num_joints = S.shape[0]
# focal length
f = np.array([focal_length[0], focal_length[1]])
# optical center
center = np.array([img_size[1] / 2.0, img_size[0] / 2.0])
# transformations
Z = np.reshape(np.tile(S[:, 2], (2, 1)).T, -1)
XY = np.reshape(S[:, 0:2], -1)
O = np.tile(center, num_joints)
F = np.tile(f, num_joints)
weight2 = np.reshape(np.tile(np.sqrt(joints_conf), (2, 1)).T, -1)
# least squares
Q = np.array(
[
F * np.tile(np.array([1, 0]), num_joints),
F * np.tile(np.array([0, 1]), num_joints),
O - np.reshape(joints_2d, -1),
]
).T
c = (np.reshape(joints_2d, -1) - O) * Z - F * XY
# weighted least squares
W = np.diagflat(weight2)
Q = np.dot(W, Q)
c = np.dot(W, c)
# square matrix
A = np.dot(Q.T, Q)
b = np.dot(Q.T, c)
# solution
trans = np.linalg.solve(A, b)
return trans
def estimate_translation(
S,
joints_2d,
focal_length,
img_size,
use_all_joints=False,
rotation=None,
pad_2d=False,
):
"""Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
Input:
S: (B, 49, 3) 3D joint locations
joints: (B, 49, 3) 2D joint locations and confidence
Returns:
(B, 3) camera translation vectors
"""
if pad_2d:
batch, num_pts = joints_2d.shape[:2]
joints_2d_pad = torch.ones((batch, num_pts, 3))
joints_2d_pad[:, :, :2] = joints_2d
joints_2d_pad = joints_2d_pad.to(joints_2d.device)
joints_2d = joints_2d_pad
device = S.device
if rotation is not None:
S = torch.einsum("bij,bkj->bki", rotation, S)
# Use only joints 25:49 (GT joints)
if use_all_joints:
S = S.cpu().numpy()
joints_2d = joints_2d.cpu().numpy()
else:
S = S[:, 25:, :].cpu().numpy()
joints_2d = joints_2d[:, 25:, :].cpu().numpy()
joints_conf = joints_2d[:, :, -1]
joints_2d = joints_2d[:, :, :-1]
trans = np.zeros((S.shape[0], 3), dtype=np.float32)
# Find the translation for each example in the batch
for i in range(S.shape[0]):
S_i = S[i]
joints_i = joints_2d[i]
conf_i = joints_conf[i]
trans[i] = estimate_translation_np(
S_i, joints_i, conf_i, focal_length=focal_length, img_size=img_size
)
return torch.from_numpy(trans).to(device)
def estimate_translation_cam(
S, joints_2d, focal_length, img_size, use_all_joints=False, rotation=None
):
"""Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
Input:
S: (B, 49, 3) 3D joint locations
joints: (B, 49, 3) 2D joint locations and confidence
Returns:
(B, 3) camera translation vectors
"""
def estimate_translation_np(S, joints_2d, joints_conf, focal_length, img_size):
"""Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
Input:
S: (25, 3) 3D joint locations
joints: (25, 3) 2D joint locations and confidence
Returns:
(3,) camera translation vector
"""
num_joints = S.shape[0]
# focal length
f = np.array([focal_length[0], focal_length[1]])
# optical center
center = np.array([img_size[0] / 2.0, img_size[1] / 2.0])
# transformations
Z = np.reshape(np.tile(S[:, 2], (2, 1)).T, -1)
XY = np.reshape(S[:, 0:2], -1)
O = np.tile(center, num_joints)
F = np.tile(f, num_joints)
weight2 = np.reshape(np.tile(np.sqrt(joints_conf), (2, 1)).T, -1)
# least squares
Q = np.array(
[
F * np.tile(np.array([1, 0]), num_joints),
F * np.tile(np.array([0, 1]), num_joints),
O - np.reshape(joints_2d, -1),
]
).T
c = (np.reshape(joints_2d, -1) - O) * Z - F * XY
# weighted least squares
W = np.diagflat(weight2)
Q = np.dot(W, Q)
c = np.dot(W, c)
# square matrix
A = np.dot(Q.T, Q)
b = np.dot(Q.T, c)
# solution
trans = np.linalg.solve(A, b)
return trans
device = S.device
if rotation is not None:
S = torch.einsum("bij,bkj->bki", rotation, S)
# Use only joints 25:49 (GT joints)
if use_all_joints:
S = S.cpu().numpy()
joints_2d = joints_2d.cpu().numpy()
else:
S = S[:, 25:, :].cpu().numpy()
joints_2d = joints_2d[:, 25:, :].cpu().numpy()
joints_conf = joints_2d[:, :, -1]
joints_2d = joints_2d[:, :, :-1]
trans = np.zeros((S.shape[0], 3), dtype=np.float32)
# Find the translation for each example in the batch
for i in range(S.shape[0]):
S_i = S[i]
joints_i = joints_2d[i]
conf_i = joints_conf[i]
trans[i] = estimate_translation_np(
S_i, joints_i, conf_i, focal_length=focal_length, img_size=img_size
)
return torch.from_numpy(trans).to(device)
def get_coord_maps(size=56):
xx_ones = torch.ones([1, size], dtype=torch.int32)
xx_ones = xx_ones.unsqueeze(-1)
xx_range = torch.arange(size, dtype=torch.int32).unsqueeze(0)
xx_range = xx_range.unsqueeze(1)
xx_channel = torch.matmul(xx_ones, xx_range)
xx_channel = xx_channel.unsqueeze(-1)
yy_ones = torch.ones([1, size], dtype=torch.int32)
yy_ones = yy_ones.unsqueeze(1)
yy_range = torch.arange(size, dtype=torch.int32).unsqueeze(0)
yy_range = yy_range.unsqueeze(-1)
yy_channel = torch.matmul(yy_range, yy_ones)
yy_channel = yy_channel.unsqueeze(-1)
xx_channel = xx_channel.permute(0, 3, 1, 2)
yy_channel = yy_channel.permute(0, 3, 1, 2)
xx_channel = xx_channel.float() / (size - 1)
yy_channel = yy_channel.float() / (size - 1)
xx_channel = xx_channel * 2 - 1
yy_channel = yy_channel * 2 - 1
out = torch.cat([xx_channel, yy_channel], dim=1)
return out
def look_at(eye, at=np.array([0, 0, 0]), up=np.array([0, 0, 1]), eps=1e-5):
at = at.astype(float).reshape(1, 3)
up = up.astype(float).reshape(1, 3)
eye = eye.reshape(-1, 3)
up = up.repeat(eye.shape[0] // up.shape[0], axis=0)
eps = np.array([eps]).reshape(1, 1).repeat(up.shape[0], axis=0)
z_axis = eye - at
z_axis /= np.max(np.stack([np.linalg.norm(z_axis, axis=1, keepdims=True), eps]))
x_axis = np.cross(up, z_axis)
x_axis /= np.max(np.stack([np.linalg.norm(x_axis, axis=1, keepdims=True), eps]))
y_axis = np.cross(z_axis, x_axis)
y_axis /= np.max(np.stack([np.linalg.norm(y_axis, axis=1, keepdims=True), eps]))
r_mat = np.concatenate(
(x_axis.reshape(-1, 3, 1), y_axis.reshape(-1, 3, 1), z_axis.reshape(-1, 3, 1)),
axis=2,
)
return r_mat
def to_sphere(u, v):
theta = 2 * np.pi * u
phi = np.arccos(1 - 2 * v)
cx = np.sin(phi) * np.cos(theta)
cy = np.sin(phi) * np.sin(theta)
cz = np.cos(phi)
s = np.stack([cx, cy, cz])
return s
def sample_on_sphere(range_u=(0, 1), range_v=(0, 1)):
u = np.random.uniform(*range_u)
v = np.random.uniform(*range_v)
return to_sphere(u, v)
def sample_pose_on_sphere(range_v=(0, 1), range_u=(0, 1), radius=1, up=[0, 1, 0]):
# sample location on unit sphere
loc = sample_on_sphere(range_u, range_v)
# sample radius if necessary
if isinstance(radius, tuple):
radius = np.random.uniform(*radius)
loc = loc * radius
R = look_at(loc, up=np.array(up))[0]
RT = np.concatenate([R, loc.reshape(3, 1)], axis=1)
RT = torch.Tensor(RT.astype(np.float32))
return RT
def rectify_pose(camera_r, body_aa, rotate_x=False):
body_r = batch_rodrigues(body_aa).reshape(-1, 3, 3)
if rotate_x:
rotate_x = torch.tensor([[[1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, -1.0]]])
body_r = body_r @ rotate_x
final_r = camera_r @ body_r
body_aa = batch_rot2aa(final_r)
return body_aa
def estimate_translation_k_np(S, joints_2d, joints_conf, K):
"""Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
Input:
S: (25, 3) 3D joint locations
joints: (25, 3) 2D joint locations and confidence
Returns:
(3,) camera translation vector
"""
num_joints = S.shape[0]
# focal length
focal = np.array([K[0, 0], K[1, 1]])
# optical center
center = np.array([K[0, 2], K[1, 2]])
# transformations
Z = np.reshape(np.tile(S[:, 2], (2, 1)).T, -1)
XY = np.reshape(S[:, 0:2], -1)
O = np.tile(center, num_joints)
F = np.tile(focal, num_joints)
weight2 = np.reshape(np.tile(np.sqrt(joints_conf), (2, 1)).T, -1)
# least squares
Q = np.array(
[
F * np.tile(np.array([1, 0]), num_joints),
F * np.tile(np.array([0, 1]), num_joints),
O - np.reshape(joints_2d, -1),
]
).T
c = (np.reshape(joints_2d, -1) - O) * Z - F * XY
# weighted least squares
W = np.diagflat(weight2)
Q = np.dot(W, Q)
c = np.dot(W, c)
# square matrix
A = np.dot(Q.T, Q)
b = np.dot(Q.T, c)
# solution
trans = np.linalg.solve(A, b)
return trans
def estimate_translation_k(
S,
joints_2d,
K,
use_all_joints=False,
rotation=None,
pad_2d=False,
):
"""Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
Input:
S: (B, 49, 3) 3D joint locations
joints: (B, 49, 3) 2D joint locations and confidence
Returns:
(B, 3) camera translation vectors
"""
if pad_2d:
batch, num_pts = joints_2d.shape[:2]
joints_2d_pad = torch.ones((batch, num_pts, 3))
joints_2d_pad[:, :, :2] = joints_2d
joints_2d_pad = joints_2d_pad.to(joints_2d.device)
joints_2d = joints_2d_pad
device = S.device
if rotation is not None:
S = torch.einsum("bij,bkj->bki", rotation, S)
# Use only joints 25:49 (GT joints)
if use_all_joints:
S = S.cpu().numpy()
joints_2d = joints_2d.cpu().numpy()
else:
S = S[:, 25:, :].cpu().numpy()
joints_2d = joints_2d[:, 25:, :].cpu().numpy()
joints_conf = joints_2d[:, :, -1]
joints_2d = joints_2d[:, :, :-1]
trans = np.zeros((S.shape[0], 3), dtype=np.float32)
# Find the translation for each example in the batch
for i in range(S.shape[0]):
S_i = S[i]
joints_i = joints_2d[i]
conf_i = joints_conf[i]
K_i = K[i]
trans[i] = estimate_translation_k_np(S_i, joints_i, conf_i, K_i)
return torch.from_numpy(trans).to(device)
def weak_perspective_to_perspective_torch(
weak_perspective_camera, focal_length, img_res, min_s
):
# Convert Weak Perspective Camera [s, tx, ty] to camera translation [tx, ty, tz]
# in 3D given the bounding box size
# This camera translation can be used in a full perspective projection
s = weak_perspective_camera[:, 0]
s = torch.clamp(s, min_s)
tx = weak_perspective_camera[:, 1]
ty = weak_perspective_camera[:, 2]
perspective_camera = torch.stack(
[
tx,
ty,
2 * focal_length / (img_res * s + 1e-9),
],
dim=-1,
)
return perspective_camera
|