Spaces:
Runtime error
Runtime error
File size: 10,903 Bytes
d6d3a5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
"""
This file contains functions that are used to perform data augmentation.
"""
import cv2
import numpy as np
import torch
from loguru import logger
def get_transform(center, scale, res, rot=0):
"""Generate transformation matrix."""
h = 200 * scale
t = np.zeros((3, 3))
t[0, 0] = float(res[1]) / h
t[1, 1] = float(res[0]) / h
t[0, 2] = res[1] * (-float(center[0]) / h + 0.5)
t[1, 2] = res[0] * (-float(center[1]) / h + 0.5)
t[2, 2] = 1
if not rot == 0:
rot = -rot # To match direction of rotation from cropping
rot_mat = np.zeros((3, 3))
rot_rad = rot * np.pi / 180
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
rot_mat[0, :2] = [cs, -sn]
rot_mat[1, :2] = [sn, cs]
rot_mat[2, 2] = 1
# Need to rotate around center
t_mat = np.eye(3)
t_mat[0, 2] = -res[1] / 2
t_mat[1, 2] = -res[0] / 2
t_inv = t_mat.copy()
t_inv[:2, 2] *= -1
t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t)))
return t
def transform(pt, center, scale, res, invert=0, rot=0):
"""Transform pixel location to different reference."""
t = get_transform(center, scale, res, rot=rot)
if invert:
t = np.linalg.inv(t)
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.0]).T
new_pt = np.dot(t, new_pt)
return new_pt[:2].astype(int) + 1
def rotate_2d(pt_2d, rot_rad):
x = pt_2d[0]
y = pt_2d[1]
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
xx = x * cs - y * sn
yy = x * sn + y * cs
return np.array([xx, yy], dtype=np.float32)
def gen_trans_from_patch_cv(
c_x, c_y, src_width, src_height, dst_width, dst_height, scale, rot, inv=False
):
# augment size with scale
src_w = src_width * scale
src_h = src_height * scale
src_center = np.array([c_x, c_y], dtype=np.float32)
# augment rotation
rot_rad = np.pi * rot / 180
src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32), rot_rad)
src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32), rot_rad)
dst_w = dst_width
dst_h = dst_height
dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32)
dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32)
dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32)
src = np.zeros((3, 2), dtype=np.float32)
src[0, :] = src_center
src[1, :] = src_center + src_downdir
src[2, :] = src_center + src_rightdir
dst = np.zeros((3, 2), dtype=np.float32)
dst[0, :] = dst_center
dst[1, :] = dst_center + dst_downdir
dst[2, :] = dst_center + dst_rightdir
if inv:
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
trans = trans.astype(np.float32)
return trans
def generate_patch_image(
cvimg,
bbox,
scale,
rot,
out_shape,
interpl_strategy,
gauss_kernel=5,
gauss_sigma=8.0,
):
img = cvimg.copy()
bb_c_x = float(bbox[0])
bb_c_y = float(bbox[1])
bb_width = float(bbox[2])
bb_height = float(bbox[3])
trans = gen_trans_from_patch_cv(
bb_c_x, bb_c_y, bb_width, bb_height, out_shape[1], out_shape[0], scale, rot
)
# anti-aliasing
blur = cv2.GaussianBlur(img, (gauss_kernel, gauss_kernel), gauss_sigma)
img_patch = cv2.warpAffine(
blur, trans, (int(out_shape[1]), int(out_shape[0])), flags=interpl_strategy
)
img_patch = img_patch.astype(np.float32)
inv_trans = gen_trans_from_patch_cv(
bb_c_x,
bb_c_y,
bb_width,
bb_height,
out_shape[1],
out_shape[0],
scale,
rot,
inv=True,
)
return img_patch, trans, inv_trans
def augm_params(is_train, flip_prob, noise_factor, rot_factor, scale_factor):
"""Get augmentation parameters."""
flip = 0 # flipping
pn = np.ones(3) # per channel pixel-noise
rot = 0 # rotation
sc = 1 # scaling
if is_train:
# We flip with probability 1/2
if np.random.uniform() <= flip_prob:
flip = 1
assert False, "Flipping not supported"
# Each channel is multiplied with a number
# in the area [1-opt.noiseFactor,1+opt.noiseFactor]
pn = np.random.uniform(1 - noise_factor, 1 + noise_factor, 3)
# The rotation is a number in the area [-2*rotFactor, 2*rotFactor]
rot = min(
2 * rot_factor,
max(
-2 * rot_factor,
np.random.randn() * rot_factor,
),
)
# The scale is multiplied with a number
# in the area [1-scaleFactor,1+scaleFactor]
sc = min(
1 + scale_factor,
max(
1 - scale_factor,
np.random.randn() * scale_factor + 1,
),
)
# but it is zero with probability 3/5
if np.random.uniform() <= 0.6:
rot = 0
augm_dict = {}
augm_dict["flip"] = flip
augm_dict["pn"] = pn
augm_dict["rot"] = rot
augm_dict["sc"] = sc
return augm_dict
def rgb_processing(is_train, rgb_img, center, bbox_dim, augm_dict, img_res):
rot = augm_dict["rot"]
sc = augm_dict["sc"]
pn = augm_dict["pn"]
scale = sc * bbox_dim
crop_dim = int(scale * 200)
# faster cropping!!
rgb_img = generate_patch_image(
rgb_img,
[center[0], center[1], crop_dim, crop_dim],
1.0,
rot,
[img_res, img_res],
cv2.INTER_CUBIC,
)[0]
# in the rgb image we add pixel noise in a channel-wise manner
rgb_img[:, :, 0] = np.minimum(255.0, np.maximum(0.0, rgb_img[:, :, 0] * pn[0]))
rgb_img[:, :, 1] = np.minimum(255.0, np.maximum(0.0, rgb_img[:, :, 1] * pn[1]))
rgb_img[:, :, 2] = np.minimum(255.0, np.maximum(0.0, rgb_img[:, :, 2] * pn[2]))
rgb_img = np.transpose(rgb_img.astype("float32"), (2, 0, 1)) / 255.0
return rgb_img
def transform_kp2d(kp2d, bbox):
# bbox: (cx, cy, scale) in the original image space
# scale is normalized
assert isinstance(kp2d, np.ndarray)
assert len(kp2d.shape) == 2
cx, cy, scale = bbox
s = 200 * scale # to px
cap_dim = 1000 # px
factor = cap_dim / (1.5 * s)
kp2d_cropped = np.copy(kp2d)
kp2d_cropped[:, 0] -= cx - 1.5 / 2 * s
kp2d_cropped[:, 1] -= cy - 1.5 / 2 * s
kp2d_cropped[:, 0] *= factor
kp2d_cropped[:, 1] *= factor
return kp2d_cropped
def j2d_processing(kp, center, bbox_dim, augm_dict, img_res):
"""Process gt 2D keypoints and apply all augmentation transforms."""
scale = augm_dict["sc"] * bbox_dim
rot = augm_dict["rot"]
nparts = kp.shape[0]
for i in range(nparts):
kp[i, 0:2] = transform(
kp[i, 0:2] + 1,
center,
scale,
[img_res, img_res],
rot=rot,
)
# convert to normalized coordinates
kp = normalize_kp2d_np(kp, img_res)
kp = kp.astype("float32")
return kp
def pose_processing(pose, augm_dict):
"""Process SMPL theta parameters and apply all augmentation transforms."""
rot = augm_dict["rot"]
# rotation or the pose parameters
pose[:3] = rot_aa(pose[:3], rot)
# flip the pose parameters
# (72),float
pose = pose.astype("float32")
return pose
def rot_aa(aa, rot):
"""Rotate axis angle parameters."""
# pose parameters
R = np.array(
[
[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
[0, 0, 1],
]
)
# find the rotation of the body in camera frame
per_rdg, _ = cv2.Rodrigues(aa)
# apply the global rotation to the global orientation
resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg))
aa = (resrot.T)[0]
return aa
def denormalize_images(images):
images = images * torch.tensor([0.229, 0.224, 0.225], device=images.device).reshape(
1, 3, 1, 1
)
images = images + torch.tensor([0.485, 0.456, 0.406], device=images.device).reshape(
1, 3, 1, 1
)
return images
def read_img(img_fn, dummy_shape):
try:
cv_img = _read_img(img_fn)
except:
logger.warning(f"Unable to load {img_fn}")
cv_img = np.zeros(dummy_shape, dtype=np.float32)
return cv_img, False
return cv_img, True
def _read_img(img_fn):
img = cv2.cvtColor(cv2.imread(img_fn), cv2.COLOR_BGR2RGB)
return img.astype(np.float32)
def normalize_kp2d_np(kp2d: np.ndarray, img_res):
assert kp2d.shape[1] == 3
kp2d_normalized = kp2d.copy()
kp2d_normalized[:, :2] = 2.0 * kp2d[:, :2] / img_res - 1.0
return kp2d_normalized
def unnormalize_2d_kp(kp_2d_np: np.ndarray, res):
assert kp_2d_np.shape[1] == 3
kp_2d = np.copy(kp_2d_np)
kp_2d[:, :2] = 0.5 * res * (kp_2d[:, :2] + 1)
return kp_2d
def normalize_kp2d(kp2d: torch.Tensor, img_res):
assert len(kp2d.shape) == 3
kp2d_normalized = kp2d.clone()
kp2d_normalized[:, :, :2] = 2.0 * kp2d[:, :, :2] / img_res - 1.0
return kp2d_normalized
def unormalize_kp2d(kp2d_normalized: torch.Tensor, img_res):
assert len(kp2d_normalized.shape) == 3
assert kp2d_normalized.shape[2] == 2
kp2d = kp2d_normalized.clone()
kp2d = 0.5 * img_res * (kp2d + 1)
return kp2d
def get_wp_intrix(fixed_focal: float, img_res):
# consruct weak perspective on patch
camera_center = np.array([img_res // 2, img_res // 2])
intrx = torch.zeros([3, 3])
intrx[0, 0] = fixed_focal
intrx[1, 1] = fixed_focal
intrx[2, 2] = 1.0
intrx[0, -1] = camera_center[0]
intrx[1, -1] = camera_center[1]
return intrx
def get_aug_intrix(
intrx, fixed_focal: float, img_res, use_gt_k, bbox_cx, bbox_cy, scale
):
"""
This function returns camera intrinsics under scaling.
If use_gt_k, the GT K is used, but scaled based on the amount of scaling in the patch.
Else, we construct an intrinsic camera with a fixed focal length and fixed camera center.
"""
if not use_gt_k:
# consruct weak perspective on patch
intrx = get_wp_intrix(fixed_focal, img_res)
else:
# update the GT intrinsics (full image space)
# such that it matches the scale of the patch
dim = scale * 200.0 # bbox size
k_scale = float(img_res) / dim # resized_dim / bbox_size in full image space
"""
# x1 and y1: top-left corner of bbox
intrinsics after data augmentation
fx' = k*fx
fy' = k*fy
cx' = k*(cx - x1)
cy' = k*(cy - y1)
"""
intrx[0, 0] *= k_scale # k*fx
intrx[1, 1] *= k_scale # k*fy
intrx[0, 2] -= bbox_cx - dim / 2.0
intrx[1, 2] -= bbox_cy - dim / 2.0
intrx[0, 2] *= k_scale
intrx[1, 2] *= k_scale
return intrx
|