Spaces:
Runtime error
Runtime error
File size: 5,942 Bytes
d6d3a5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from common.ld_utils import unsort as unsort_list
# pytorch implementation for np.nanmean
# https://github.com/pytorch/pytorch/issues/21987#issuecomment-539402619
def nanmean(v, *args, inplace=False, **kwargs):
if not inplace:
v = v.clone()
is_nan = torch.isnan(v)
v[is_nan] = 0
return v.sum(*args, **kwargs) / (~is_nan).float().sum(*args, **kwargs)
def grad_norm(model):
# compute norm of gradient for a model
total_norm = None
for p in model.parameters():
if p.grad is not None:
if total_norm is None:
total_norm = 0
param_norm = p.grad.detach().data.norm(2)
total_norm += param_norm.item() ** 2
if total_norm is not None:
total_norm = total_norm ** (1.0 / 2)
else:
total_norm = 0.0
return total_norm
def pad_tensor_list(v_list: list):
dev = v_list[0].device
num_meshes = len(v_list)
num_dim = 1 if len(v_list[0].shape) == 1 else v_list[0].shape[1]
v_len_list = []
for verts in v_list:
v_len_list.append(verts.shape[0])
pad_len = max(v_len_list)
dtype = v_list[0].dtype
if num_dim == 1:
padded_tensor = torch.zeros(num_meshes, pad_len, dtype=dtype)
else:
padded_tensor = torch.zeros(num_meshes, pad_len, num_dim, dtype=dtype)
for idx, (verts, v_len) in enumerate(zip(v_list, v_len_list)):
padded_tensor[idx, :v_len] = verts
padded_tensor = padded_tensor.to(dev)
v_len_list = torch.LongTensor(v_len_list).to(dev)
return padded_tensor, v_len_list
def unpad_vtensor(
vtensor: (torch.Tensor), lens: (torch.LongTensor, torch.cuda.LongTensor)
):
tensors_list = []
for verts, vlen in zip(vtensor, lens):
tensors_list.append(verts[:vlen])
return tensors_list
def one_hot_embedding(labels, num_classes):
"""Embedding labels to one-hot form.
Args:
labels: (LongTensor) class labels, sized [N, D1, D2, ..].
num_classes: (int) number of classes.
Returns:
(tensor) encoded labels, sized [N, D1, D2, .., Dk, #classes].
"""
y = torch.eye(num_classes).float()
return y[labels]
def unsort(ten, sort_idx):
"""
Unsort a tensor of shape (N, *) using the sort_idx list(N).
Return a tensor of the pre-sorting order in shape (N, *)
"""
assert isinstance(ten, torch.Tensor)
assert isinstance(sort_idx, list)
assert ten.shape[0] == len(sort_idx)
out_list = list(torch.chunk(ten, ten.size(0), dim=0))
out_list = unsort_list(out_list, sort_idx)
out_list = torch.cat(out_list, dim=0)
return out_list
def all_comb(X, Y):
"""
Returns all possible combinations of elements in X and Y.
X: (n_x, d_x)
Y: (n_y, d_y)
Output: Z: (n_x*x_y, d_x+d_y)
Example:
X = tensor([[8, 8, 8],
[7, 5, 9]])
Y = tensor([[3, 8, 7, 7],
[3, 7, 9, 9],
[6, 4, 3, 7]])
Z = tensor([[8, 8, 8, 3, 8, 7, 7],
[8, 8, 8, 3, 7, 9, 9],
[8, 8, 8, 6, 4, 3, 7],
[7, 5, 9, 3, 8, 7, 7],
[7, 5, 9, 3, 7, 9, 9],
[7, 5, 9, 6, 4, 3, 7]])
"""
assert len(X.size()) == 2
assert len(Y.size()) == 2
X1 = X.unsqueeze(1)
Y1 = Y.unsqueeze(0)
X2 = X1.repeat(1, Y.shape[0], 1)
Y2 = Y1.repeat(X.shape[0], 1, 1)
Z = torch.cat([X2, Y2], -1)
Z = Z.view(-1, Z.shape[-1])
return Z
def toggle_parameters(model, requires_grad):
"""
Set all weights to requires_grad or not.
"""
for param in model.parameters():
param.requires_grad = requires_grad
def detach_tensor(ten):
"""This function move tensor to cpu and convert to numpy"""
if isinstance(ten, torch.Tensor):
return ten.cpu().detach().numpy()
return ten
def count_model_parameters(model):
"""
Return the amount of parameters that requries gradients.
"""
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def reset_all_seeds(seed):
"""Reset all seeds for reproduciability."""
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
def get_activation(name):
"""This function return an activation constructor by name."""
if name == "tanh":
return nn.Tanh()
elif name == "sigmoid":
return nn.Sigmoid()
elif name == "relu":
return nn.ReLU()
elif name == "selu":
return nn.SELU()
elif name == "relu6":
return nn.ReLU6()
elif name == "softplus":
return nn.Softplus()
elif name == "softshrink":
return nn.Softshrink()
else:
print("Undefined activation: %s" % (name))
assert False
def stack_ll_tensors(tensor_list_list):
"""
Recursively stack a list of lists of lists .. whose elements are tensors with the same shape
"""
if isinstance(tensor_list_list, torch.Tensor):
return tensor_list_list
assert isinstance(tensor_list_list, list)
if isinstance(tensor_list_list[0], torch.Tensor):
return torch.stack(tensor_list_list)
stacked_tensor = []
for tensor_list in tensor_list_list:
stacked_tensor.append(stack_ll_tensors(tensor_list))
stacked_tensor = torch.stack(stacked_tensor)
return stacked_tensor
def get_optim(name):
"""This function return an optimizer constructor by name."""
if name == "adam":
return optim.Adam
elif name == "rmsprop":
return optim.RMSprop
elif name == "sgd":
return optim.SGD
else:
print("Undefined optim: %s" % (name))
assert False
def decay_lr(optimizer, gamma):
"""
Decay the learning rate by gamma
"""
assert isinstance(gamma, float)
assert 0 <= gamma and gamma <= 1.0
for param_group in optimizer.param_groups:
param_group["lr"] *= gamma
|