File size: 19,346 Bytes
d6d3a5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# import sonnet as snt
# from tensor2tensor.layers import common_attention
# from tensor2tensor.layers import common_layers
# import tensorflow.compat.v1 as tf
# from tensorflow.python.framework import function
# import tensorflow_probability as tfp

import numpy as np
import torch.nn as nn
# import layer_utils
import torch
# import data_utils_torch as data_utils
import math ## 

# from options.options import opt



### 
class TransformerEncoder(nn.Module):
    def __init__(self,
                 hidden_size=256,
                 fc_size=1024,
                 num_heads=4,
                 layer_norm=True,
                 num_layers=8,
                 dropout_rate=0.2,
                 re_zero=True,
                 memory_efficient=False,
                 ):
        super(TransformerEncoder, self).__init__()
        ## hidden size, fc size, ##
        ## hidden size, fc size, num heads, layer_norm, num_layers, dropout_rate, 
        self.hidden_size = hidden_size
        self.fc_size = fc_size ## fc_size ##
        self.num_heads = num_heads ## num_heads ##
        # self.num_heads = 1
        self.layer_norm = layer_norm
        self.num_layers = num_layers ## num_layers ##
        self.dropout_rate = dropout_rate
        self.re_zero = re_zero
        self.memory_efficient = memory_efficient

        ### Attention layer and related modules ###
        self.attention_layers = nn.ModuleList()
        if self.layer_norm:
            self.layer_norm_layers = nn.ModuleList()
        if self.re_zero:
            self.re_zero_vars = nn.ParameterList()
        if self.dropout_rate: # dropout rate
            self.dropout_layers = nn.ModuleList()
        for i in range(self.num_layers): ## dropout rate, kdim, vdim, 
            cur_atten_layer = nn.MultiheadAttention( ## hidden_size, hidden_size ##
                self.hidden_size, self.num_heads, dropout=0.0, bias=True, kdim=self.hidden_size, vdim=self.hidden_size, batch_first=True)
            self.attention_layers.append(cur_atten_layer)
            if self.layer_norm: ## layernorm ##
                cur_layer_norm = nn.LayerNorm(self.hidden_size)
                self.layer_norm_layers.append(cur_layer_norm)
            if self.re_zero:
                cur_re_zero_var = torch.nn.Parameter(torch.zeros(size=(1,), dtype=torch.float32, requires_grad=True), requires_grad=True)
                self.re_zero_vars.append(cur_re_zero_var)
            if self.dropout_rate:
                cur_dropout_layer = nn.Dropout(p=self.dropout_rate)
                self.dropout_layers.append(cur_dropout_layer)

        ### Attention layer and related modules ###
        self.fc_layers = nn.ModuleList()
        if self.layer_norm:
            self.fc_layer_norm_layers = nn.ModuleList()
        if self.re_zero:
            self.fc_re_zero_vars = nn.ParameterList()
        if self.dropout_rate:
            self.fc_dropout_layers = nn.ModuleList() # dropout layers
        for i in range(self.num_layers):
            cur_fc_layer = nn.Linear(in_features=self.hidden_size, out_features=self.fc_size, bias=True)
            cur_fc_layer_2 = nn.Linear(in_features=self.fc_size, out_features=self.hidden_size, bias=True)
            self.fc_layers.append(nn.Sequential(*[cur_fc_layer, cur_fc_layer_2]))
            if self.layer_norm: # layer norm
                cur_layer_norm = nn.LayerNorm(self.hidden_size)
                self.fc_layer_norm_layers.append(cur_layer_norm)
            if self.re_zero: # re_zero_var 
                cur_re_zero_var = torch.nn.Parameter(
                    torch.zeros(size=(1,), dtype=torch.float32, requires_grad=True), requires_grad=True)
                self.fc_re_zero_vars.append(cur_re_zero_var)
            if self.dropout_rate:
                cur_dropout_layer = nn.Dropout(p=self.dropout_rate)
                self.fc_dropout_layers.append(cur_dropout_layer)

        if self.layer_norm:
            self.out_layer_norm = nn.LayerNorm(self.hidden_size)

    def forward(self, inputs, set_attn_to_none=False):
        ### padding 
        # bsz x seq_length x embedding_dim #
        bsz, seq_length = inputs.size(0), inputs.size(1)
        
        if set_attn_to_none:
            atten_mask = None
        else:
            atten_mask = np.tri(seq_length, seq_length, -1.0, dtype=np.float32).T # tri ### elements in the upper triangle are set to 1.0 ###
            atten_mask = torch.from_numpy(atten_mask).float() # .cuda()
            atten_mask = atten_mask.to(inputs.device)
            atten_mask = atten_mask > 0.5 ## the bool format
            
        
        # if inputs_mask is None:
        #     encoder_padding = layer_utils.embedding_to_padding(inputs) # bsz x n_vertices
        # else:
        #     encoder_padding = inputs_mask # inputs_mask: bsz x n_vertices
        # bsz = inputs.size(0)
        # seq_length = inputs.size(1)
        # ## attention masksingle direction ## need 
        # # encoder_self_attention_bias = layer_utils.attention_bias_ignore_padding(encoder_padding)
        # # encoder_self_attention_mask = layer_utils.attention_mask(encoder_padding)
        # encoder_self_attention_mask = layer_utils.attention_mask_single_direction(encoder_padding)
        # # print(f"in vertex model forwarding function, encoder_self_attention_mask: {encoder_self_attention_mask.size()}, inputs: {inputs.size()}")
        # encoder_self_attention_mask = encoder_self_attention_mask.unsqueeze(1).repeat(1, self.num_heads, 1, 1)
        # encoder_self_attention_mask = encoder_self_attention_mask.contiguous().view(bsz * self.num_heads, seq_length, seq_length).contiguous()
        # seq_length = inputs.size(1)
        x = inputs ## bsz x seq_length x # bsz x seq x seq for the mask #

        # zeros padding layer ## remember to add that! # zero padding layer #
        # atten_mask = np.tri(seq_length, seq_length, -1.0, dtype=np.float32).T # mask; 
        # atten_mask = torch.from_numpy(atten_mask).float().cuda() ## mask single direction 
        ## encode for each 
        for i in range(self.num_layers):
            res = x.clone()
            if self.layer_norm:
                res = self.layer_norm_layers[i](res) ## res, res ## ## layernorm layers ##
            # print(f"before attention {i}/{self.num_layers}, res: {res.size()}")
            # res, _ = self.attention_layers[i](res, res, res, attn_mask=atten_mask) 
            ## attentiion layers ### ## self-attention ## ## memory, q, k, v ## bsz x seq x latnetdim --> bsz x seq x seq for frame-frame weights ###
            ### bsz x seq x seq --> weights ### initialize something to zero for modeling controls ###
            res, _ = self.attention_layers[i](res, res, res, attn_mask=atten_mask)
            # print(f"after attention {i}/{self.num_layers}, res: {res.size()}")
            if self.re_zero:
                res = res * self.re_zero_vars[i]
            if self.dropout_rate:
                res = self.dropout_layers[i](res)
            x = x + res

            res = x.clone()
            if self.layer_norm:
                res = self.fc_layer_norm_layers[i](res) # fc norm #
            res = self.fc_layers[i](res)
            if self.re_zero:
                res = res * self.fc_re_zero_vars[i]
            if self.dropout_rate:
                res = self.fc_dropout_layers[i](res)
            x = x + res
        if self.layer_norm:
            x = self.out_layer_norm(x)
        return x


class TransformerDecoder(nn.Module):
    def __init__(self,
                 hidden_size=256,
                 fc_size=1024,
                 num_heads=4,
                 layer_norm=True,
                 num_layers=8,
                 dropout_rate=0.2,
                 re_zero=True,
                 with_seq_context=False
                 ):
        super(TransformerDecoder, self).__init__()
        self.hidden_size = hidden_size
        self.fc_size = fc_size
        self.num_heads = num_heads
        self.layer_norm = layer_norm
        self.num_layers = num_layers
        self.dropout_rate = dropout_rate
        self.re_zero = re_zero
        self.with_seq_context = with_seq_context
        # self.context_window = opt.model.context_window
        self.atten_mask = None
        self.context_atten_mask = None
        # self.prefix_key_len = opt.model.prefix_key_len ## can add prefix key values for prefix queries ##
        # self.prefix_value_len = opt.model.prefix_value_len ## can add prefix key values for prefix queries ##
        # self.prefix_value_len = value length #

        ### Attention layer and related modules ###
        self.attention_layers = nn.ModuleList()
        if self.layer_norm:
            self.layer_norm_layers = nn.ModuleList()
        if self.re_zero:
            self.re_zero_vars = nn.ParameterList()
        if self.dropout_rate:
            self.dropout_layers = nn.ModuleList()
        
        for i in range(self.num_layers):
            cur_atten_layer = nn.MultiheadAttention(
                self.hidden_size, self.num_heads, dropout=0.0, bias=True, kdim=self.hidden_size, vdim=self.hidden_size,
                batch_first=True)
            self.attention_layers.append(cur_atten_layer)
            if self.layer_norm:
                cur_layer_norm = nn.LayerNorm(self.hidden_size)
                self.layer_norm_layers.append(cur_layer_norm)
            if self.re_zero:
                cur_re_zero_var = torch.nn.Parameter(torch.zeros(size=(1,), dtype=torch.float32, requires_grad=True), requires_grad=True)
                self.re_zero_vars.append(cur_re_zero_var)
            if self.dropout_rate: ## dropout
                cur_dropout_layer = nn.Dropout(p=self.dropout_rate)
                self.dropout_layers.append(cur_dropout_layer)
        
        if self.with_seq_context:
            ##### attention, re_zero, dropout layers for the context attention layers #####
            self.context_attention_layers = nn.ModuleList()
            if self.layer_norm:
                self.context_norm_layers = nn.ModuleList()
            if self.re_zero:
                self.context_re_zero_vars = nn.ParameterList()
            if self.dropout_rate:
                self.context_dropout_layers = nn.ModuleList()
            for i in range(self.num_layers):
                cur_atten_layer = nn.MultiheadAttention(
                    self.hidden_size, self.num_heads, dropout=0.0, bias=True, kdim=self.hidden_size, vdim=self.hidden_size,
                    batch_first=True)
                self.context_attention_layers.append(cur_atten_layer)
                if self.layer_norm:
                    cur_layer_norm = nn.LayerNorm(self.hidden_size)
                    self.context_norm_layers.append(cur_layer_norm)
                if self.re_zero:
                    cur_re_zero_var = torch.nn.Parameter(torch.zeros(size=(1,), dtype=torch.float32, requires_grad=True), requires_grad=True)
                    self.context_re_zero_vars.append(cur_re_zero_var)
                if self.dropout_rate:
                    cur_dropout_layer = nn.Dropout(p=self.dropout_rate)
                    # dropout layers
                    self.context_dropout_layers.append(cur_dropout_layer)

        ### Attention layer and related modules ###
        self.fc_layers = nn.ModuleList()
        if self.layer_norm:
            self.fc_layer_norm_layers = nn.ModuleList()
        if self.re_zero:
            self.fc_re_zero_vars = nn.ParameterList()
            # self.fc_re_zero_vars = nn.ModuleList()
        if self.dropout_rate:
            self.fc_dropout_layers = nn.ModuleList()
        for i in range(self.num_layers):
            cur_fc_layer = nn.Linear(in_features=self.hidden_size, out_features=self.fc_size, bias=True)
            cur_fc_layer_2 = nn.Linear(in_features=self.fc_size, out_features=self.hidden_size, bias=True)
            self.fc_layers.append(nn.Sequential(*[cur_fc_layer, cur_fc_layer_2]))
            if self.layer_norm:
                cur_layer_norm = nn.LayerNorm(self.hidden_size)
                self.fc_layer_norm_layers.append(cur_layer_norm)
            if self.re_zero:
                cur_re_zero_var = torch.nn.Parameter(
                    torch.zeros(size=(1,), dtype=torch.float32, requires_grad=True), requires_grad=True)
                self.fc_re_zero_vars.append(cur_re_zero_var)
            if self.dropout_rate: ## dropout rate ##
                cur_dropout_layer = nn.Dropout(p=self.dropout_rate)
                self.fc_dropout_layers.append(cur_dropout_layer)

        if self.layer_norm:
            self.out_layer_norm = nn.LayerNorm(self.hidden_size)

    def forward(self, inputs, sequential_context_embeddings=None):
        seq_length = inputs.size(1)
        bsz = inputs.size(0)
        # #### ## sequential context embeddings for the embedding --> bsz x seq_length x feat_dim ####
        # TODO: mask for inputs can be set to 1) None, then a fully-attention setting, 2) self-mask setting #
        # ### sequential context mask should be set to a self-mask setting -> each self element can attend to self and before information ### #
        atten_mask = None ## mask for inputs
        
        if sequential_context_embeddings is not None:
            # sequential_context_mask = np.tri(seq_length, seq_length, -1.0, dtype=np.float32).T # tri ## triangle mask ##
            ## 
            # sequential_context_mask = np.tri(inputs.size(1), sequential_context_embeddings.size(1), -1.0, dtype=np.float32).T # tri
            # 1 x 30 --> no mask !
            sequential_context_mask = np.tri(sequential_context_embeddings.size(1), inputs.size(1), -1.0, dtype=np.float32).T # tri
            sequential_context_mask = torch.from_numpy(sequential_context_mask).float() # .cuda()
            sequential_context_mask = sequential_context_mask.to(inputs.device)
            sequential_context_mask = sequential_context_mask > 0.5
        
        # # print(f"inputs: {inputs.size()}") ####
        # if self.training:
        #     if self.atten_mask is None: ## seq length ##
        #         atten_mask = np.tri(seq_length, seq_length, -1.0, dtype=np.float32).T # tri
        #         # atten_mask = np.tri(seq_length, seq_length, 0.0, dtype=np.float32)
        #         atten_mask = torch.from_numpy(atten_mask).float().cuda()
        #         self.atten_mask = atten_mask
        #     else:
        #         atten_mask = self.atten_mask
        # else: ### atten_mask 
        #     atten_mask = np.tri(seq_length, seq_length, -1.0, dtype=np.float32).T # tri
        #     # atten_mask = np.tri(seq_length, seq_length, 0.0, dtype=np.float32)
        #     atten_mask = torch.from_numpy(atten_mask).float().cuda()

        # context_window 
        # if self.context_window > 0 and sequential_context_embeddings is None:
        #     # ##### add global context embeddings to embedding vectors ##### #
        #     # inputs = inputs[:, 0:1] + inputs # add the contextual information to inputs # not add...
        #     # if opt.model.debug:
        #     #     print(f"Using context window {self.context_window} for decoding...")
        #     if self.training:
        #         if self.context_atten_mask is None:
        #             context_atten_mask = np.tri(seq_length, seq_length, -1.0 * float(self.context_window), dtype=np.float32)
        #             context_atten_mask = torch.from_numpy(context_atten_mask).float().cuda()
        #             self.context_atten_mask = context_atten_mask
        #         else:
        #             context_atten_mask = self.context_atten_mask
        #     else:
        #         context_atten_mask = np.tri(seq_length, seq_length, -1.0 * float(self.context_window), dtype=np.float32)
        #         context_atten_mask = torch.from_numpy(context_atten_mask).float().cuda()
        #     atten_mask = context_atten_mask + atten_mask
        # # context attention mask
        # atten_mask = (atten_mask > 0.5)

        # if len(atten_mask.size()) == 2:
        #     atten_mask[: self.prefix_key_len, ] = False
        # else:
        #     atten_mask[:, : self.prefix_key_len] = False

        
        # print(atten_mask)

        # if sequential_context_embeddings is not None:
        #     context_length = sequential_context_embeddings.size(1)
        #     # sequential_context_padding = layer_utils.embedding_to_padding(sequential_context_embeddings)

        #     if sequential_context_mask is None:
        #       sequential_context_padding = layer_utils.embedding_to_padding(sequential_context_embeddings)
        #     else: # 
        #       sequential_context_padding = 1. - sequential_context_mask.float() # sequential context mask?
        #       # sequential_context_padding = layer_utils.embedding_to_padding(sequential_context_embeddings)
        #     # j
        #     sequential_context_atten_mask = layer_utils.attention_mask_single_direction(sequential_context_padding, other_len=seq_length)
        #     # print(f"in decoder's forward function, sequential_context_padding: {sequential_context_padding.size()}, sequential_context_atten_mask: {sequential_context_atten_mask.size()}")
        #     sequential_context_atten_mask = sequential_context_atten_mask.unsqueeze(1).repeat(1, self.num_heads, 1, 1)
        #     sequential_context_atten_mask = sequential_context_atten_mask.contiguous().view(bsz * self.num_heads, seq_length, context_length).contiguous()
        
        x = inputs

        for i in range(self.num_layers):
            res = x.clone()
            if self.layer_norm:
                res = self.layer_norm_layers[i](res) # # self attention; all self attention; sequential 
            res, _ = self.attention_layers[i](res, res, res, attn_mask=atten_mask)
            if self.re_zero:
                res = res * self.re_zero_vars[i].unsqueeze(0).unsqueeze(0)
            if self.dropout_rate:
                res = self.dropout_layers[i](res)
            x = x + res

            # if we use sequential context embeddings
            if sequential_context_embeddings is not None:
                # for sequential context embedding
                res = x.clone()
                # then layer_norm, attention layer, re_zero layer and the dropout layer
                if self.layer_norm:
                    res = self.context_norm_layers[i](res) ## need sequential masks! res can only attent to former sequential contexts ## ## 
                res, _ = self.context_attention_layers[i](res, sequential_context_embeddings, sequential_context_embeddings, attn_mask=sequential_context_mask)
                if self.re_zero:
                    res = res * self.context_re_zero_vars[i].unsqueeze(0).unsqueeze(0)
                if self.dropout_rate:
                    res = self.context_dropout_layers[i](res)
                x = x + res
            

            res = x.clone()
            if self.layer_norm:
                res = self.fc_layer_norm_layers[i](res)
            res = self.fc_layers[i](res)
            if self.re_zero:
                res = res * self.fc_re_zero_vars[i]
            if self.dropout_rate: # dropout layers # fc_dropout_layers
                res = self.fc_dropout_layers[i](res)
            x = x + res
        if self.layer_norm:
            x = self.out_layer_norm(x)
        # x = x[:, self.prefix_key_len - 1: ]
        return x