Spaces:
Runtime error
Runtime error
File size: 31,709 Bytes
d6d3a5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
from argparse import ArgumentParser
import argparse
import os
import json
#
def parse_and_load_from_model(parser):
# args according to the loaded model
# do not try to specify them from cmd line since they will be overwritten
add_data_options(parser)
add_model_options(parser)
add_diffusion_options(parser)
args = parser.parse_args()
args_to_overwrite = []
for group_name in ['dataset', 'model', 'diffusion']:
args_to_overwrite += get_args_per_group_name(parser, args, group_name)
# load args from model
model_path = get_model_path_from_args()
print(f"model: {model_path}, dir_name: {os.path.dirname(model_path)}")
args_path = os.path.join(os.path.dirname(model_path), 'args.json')
assert os.path.exists(args_path), 'Arguments json file was not found!'
with open(args_path, 'r') as fr:
model_args = json.load(fr)
for a in args_to_overwrite:
if a in model_args.keys():
setattr(args, a, model_args[a])
elif 'cond_mode' in model_args: # backward compitability
unconstrained = (model_args['cond_mode'] == 'no_cond')
setattr(args, 'unconstrained', unconstrained)
else:
print('Warning: was not able to load [{}], using default value [{}] instead.'.format(a, args.__dict__[a]))
if args.cond_mask_prob == 0:
args.guidance_param = 1
return args
def get_args_per_group_name(parser, args, group_name):
for group in parser._action_groups:
if group.title == group_name:
group_dict = {a.dest: getattr(args, a.dest, None) for a in group._group_actions}
return list(argparse.Namespace(**group_dict).__dict__.keys())
return ValueError('group_name was not found.')
def get_model_path_from_args():
try:
dummy_parser = ArgumentParser()
dummy_parser.add_argument('model_path')
dummy_args, _ = dummy_parser.parse_known_args()
return dummy_args.model_path
except:
raise ValueError('model_path argument must be specified.')
def add_base_options(parser):
group = parser.add_argument_group('base')
group.add_argument("--cuda", default=True, type=bool, help="Use cuda device, otherwise use CPU.")
group.add_argument("--device", default=0, type=int, help="Device id to use.")
group.add_argument("--seed", default=10, type=int, help="For fixing random seed.")
group.add_argument("--batch_size", default=64, type=int, help="Batch size during training.")
group.add_argument("--debug", action='store_true',
help="If True, will run evaluation during training.")
# rep_type
group.add_argument("--rep_type", default="", type=str,
help="If empty, will use defaults according to the specified dataset.")
group.add_argument("--local_rank", default=0, type=int, help="Batch size during training.") ## for dist util ##
group.add_argument("--nprocs", default=1, type=int, help="Batch size during training.") ## for dist util ##
# denoising_stra
### 1) rep -> represetntions directly; 2) motion_to_rep
group.add_argument("--denoising_stra", default="rep", type=str,
help="Denoising strategy")
# inter_optim
group.add_argument("--inter_optim", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# diff_jts
group.add_argument("--diff_jts", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# diff_basejtsrel
group.add_argument("--diff_basejtsrel", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# diff_basejtse
group.add_argument("--diff_basejtse", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_sep_models
group.add_argument("--use_sep_models", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_vae
group.add_argument("--use_vae", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# kl_weights
group.add_argument("--kl_weights", default=0.0, type=float, help="Joint positions loss.")
### 1) rep -> represetntions directly; 2) motion_to_rep
group.add_argument("--jts_sclae_stra", default="bbox", type=str,
help="Denoising strategy")
# use_sigmoid
group.add_argument("--use_sigmoid", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# train_enc
group.add_argument("--train_enc", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# train_diff ##
group.add_argument("--train_diff", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
## with_dec_pos_emb ---- whether to use pos emb ##
group.add_argument("--without_dec_pos_emb", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# pred_diff_noise
group.add_argument("--pred_diff_noise", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# pred_diff_noise
group.add_argument("--deep_fuse_timeemb", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_ours_transformer_enc
group.add_argument("--use_ours_transformer_enc", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
group.add_argument("--not_load_opt", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# resume_diff
group.add_argument("--resume_diff", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# const_noise
group.add_argument("--const_noise", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# set_attn_to_none
group.add_argument("--set_attn_to_none", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# rnd_noise
group.add_argument("--rnd_noise", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# jts_pred_loss_coeff
# basejtsrel_pred_loss_coeff,
# basejtse_along_normal_loss_coeff, basejtse_vt_normal_loss_coeff
# jts_pred_loss_coeff
group.add_argument("--jts_pred_loss_coeff", default=20.0, type=float, help="Joint positions loss.")
# basejtsrel_pred_loss_coeff
group.add_argument("--basejtsrel_pred_loss_coeff", default=20.0, type=float, help="Joint positions loss.")
# basejtse_along_normal_loss_coeff
group.add_argument("--basejtse_along_normal_loss_coeff", default=20.0, type=float, help="Joint positions loss.")
# basejtse_vt_normal_loss_coeff
group.add_argument("--basejtse_vt_normal_loss_coeff", default=20.0, type=float, help="Joint positions loss.")
# wo_e_normalization
group.add_argument("--wo_e_normalization", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# wo_rel_normalization
group.add_argument("--wo_rel_normalization", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_dec_rel_v2
group.add_argument("--use_dec_rel_v2", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# pred_basejtsrel_avgjts ### pred_basejtsrel_avgjts ###
group.add_argument("--pred_basejtsrel_avgjts", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
#only_first_clip
group.add_argument("--only_first_clip", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# single_frame_noise
group.add_argument("--single_frame_noise", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_t
group.add_argument("--use_t", default=1, type=int, help="Joint positions loss.")
# not_add_noise
group.add_argument("--not_add_noise", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# not_cond_base
group.add_argument("--not_cond_base", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# not_pred_avg_jts
group.add_argument("--not_pred_avg_jts", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# diff_spatial
group.add_argument("--diff_spatial", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# pred_joints_offset
group.add_argument("--pred_joints_offset", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# not_diff_avgjts
group.add_argument("--not_diff_avgjts", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
## joint_std_v2
group.add_argument("--joint_std_v2", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# joint_std_v3
group.add_argument("--joint_std_v3", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# diff_latents
group.add_argument("--diff_latents", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_canon_joints
group.add_argument("--use_canon_joints", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_var_sched
group.add_argument("--use_var_sched", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# e_normalization_stra
group.add_argument("--e_normalization_stra", default="cent", type=str,
help="If empty, will use defaults according to the specified dataset.")
# diff_realbasejtsrel
group.add_argument("--diff_realbasejtsrel", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# real_basejtsrel_norm_stra
group.add_argument("--real_basejtsrel_norm_stra", default="none", type=str,
help="If empty, will use defaults according to the specified dataset.")
# diff_realbasejtsrel_to_joints ## basejtsrel_to_joints
group.add_argument("--diff_realbasejtsrel_to_joints", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_abs_jts_pos
group.add_argument("--use_abs_jts_pos", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_abs_jts_for_encoding
group.add_argument("--use_abs_jts_for_encoding", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_abs_jts_for_encoding_obj_base
group.add_argument("--use_abs_jts_for_encoding_obj_base", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_objbase_v2
group.add_argument("--use_objbase_v2", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_objbase_v3
group.add_argument("--use_objbase_v3", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_jts_pert_realbasejtsrel
group.add_argument("--use_jts_pert_realbasejtsrel", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_objbase_out_v3
group.add_argument("--use_objbase_out_v3", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# nn_base_pts
group.add_argument("--nn_base_pts", default=700, type=int, help="Joint positions loss.")
# use_objbase_v4, use_objbase_out_v4
group.add_argument("--use_objbase_v4", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
group.add_argument("--use_objbase_out_v4", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# ### objbase_v5, use_objbase_out_v5 ###
group.add_argument("--use_objbase_v5", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
group.add_argument("--use_objbase_out_v5", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# out_objbase_v5_bundle_out
group.add_argument("--out_objbase_v5_bundle_out", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# add_noise_onjts
group.add_argument("--add_noise_onjts", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# add_noise_onjts_single
group.add_argument("--add_noise_onjts_single", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# v5_out_not_cond_base
group.add_argument("--v5_out_not_cond_base", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# v5_out_not_cond_base
group.add_argument("--use_objbase_v6", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_objbase_v7
group.add_argument("--use_objbase_v7", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# predicted_info_fn
group.add_argument("--predicted_info_fn", default="", type=str,
help="If empty, will use defaults according to the specified dataset.")
# only_cmb_finger
group.add_argument("--only_cmb_finger", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_vox_data
group.add_argument("--use_vox_data", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# v5_in_not_base_pos
group.add_argument("--v5_in_not_base_pos", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# v5_in_not_base
group.add_argument("--v5_in_not_base", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# v5_in_without_glb
group.add_argument("--v5_in_without_glb", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# finetune_with_cond
group.add_argument("--finetune_with_cond", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# in_eval
group.add_argument("--in_eval", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# finetune_with_cond_rel; finetune_with_cond_jtsobj
group.add_argument("--finetune_with_cond_rel", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# finetune_with_cond_jtsobj
group.add_argument("--finetune_with_cond_jtsobj", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# sel_basepts_idx
group.add_argument("--sel_basepts_idx", default=0, type=int, help="Joint positions loss.")
# test_tag
group.add_argument("--test_tag", default="", type=str,
help="If empty, will use defaults according to the specified dataset.")
# finetune_cond_obj_feats_dim
group.add_argument("--finetune_cond_obj_feats_dim", default=3, type=int, help="Joint positions loss.")
# cad_model_fn
group.add_argument("--cad_model_fn", default="", type=str,
help="If empty, will use defaults according to the specified dataset.")
# cad_model_fn
# group.add_argument("--cad_model_fn", default="", type=str,
# help="If empty, will use defaults according to the specified dataset.")
# diff_joint_quants
group.add_argument("--diff_joint_quants", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# joint_quants_nn
group.add_argument("--joint_quants_nn", default=2, type=int, help="Joint positions loss.")
# use_same_noise_for_rep ### whether to use the same noise for representations denoising ## #
group.add_argument("--use_same_noise_for_rep", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_temporal_rep_v2
group.add_argument("--use_temporal_rep_v2", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_arti_obj
group.add_argument("--use_arti_obj", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# pert_type
group.add_argument("--pert_type", default="gaussian", type=str,
help="If empty, will use defaults according to the specified dataset.")
# use_anchors #
group.add_argument("--use_anchors", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# with_glb_info
group.add_argument("--with_glb_info", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# phy_guided_sampling
group.add_argument("--phy_guided_sampling", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# diff_hand_params
group.add_argument("--diff_hand_params", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
group.add_argument("--corr_fn", default="", type=str,
help="If empty, will use defaults according to the specified dataset.")
#
group.add_argument("--augment", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# train_all_clips
group.add_argument("--train_all_clips", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_predicted_infos
group.add_argument("--use_predicted_infos", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# start_idx ### start_idx here for the starting idxes 3
group.add_argument("--start_idx", default=50, type=int, help="Joint positions loss.")
# theta_dim
group.add_argument("--theta_dim", default=24, type=int, help="Joint positions loss.")
# use_interpolated_infos
group.add_argument("--use_interpolated_infos", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_reverse
group.add_argument("--use_reverse", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# predicted_info_fn_jts_only
group.add_argument("--predicted_info_fn_jts_only", default="", type=str,
help="If empty, will use defaults according to the specified dataset.")
# select_part_idx
group.add_argument("--select_part_idx", default=-1, type=int, help="Joint positions loss.")
# not_canon_rep
group.add_argument("--not_canon_rep", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# scale_obj
group.add_argument("--scale_obj", default=1, type=int, help="Joint positions loss.")
group.add_argument("--resplit", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_arctic
group.add_argument("--use_arctic", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
group.add_argument("--use_left", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
# use_pose_pred
group.add_argument("--use_pose_pred", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
group.add_argument("--use_hho", default=False, action='store_true', help="Use cuda device, otherwise use CPU.")
def add_diffusion_options(parser):
group = parser.add_argument_group('diffusion')
group.add_argument("--noise_schedule", default='cosine', choices=['linear', 'cosine'], type=str,
help="Noise schedule type")
group.add_argument("--diffusion_steps", default=1000, type=int,
help="Number of diffusion steps (denoted T in the paper)")
group.add_argument("--sigma_small", default=True, type=bool, help="Use smaller sigma values.")
def add_model_options(parser):
group = parser.add_argument_group('model')
group.add_argument("--arch", default='trans_enc',
choices=['trans_enc', 'trans_dec', 'gru'], type=str,
help="Architecture types as reported in the paper.")
group.add_argument("--emb_trans_dec", default=False, type=bool,
help="For trans_dec architecture only, if true, will inject condition as a class token"
" (in addition to cross-attention).")
group.add_argument("--layers", default=8, type=int,
help="Number of layers.")
group.add_argument("--latent_dim", default=512, type=int,
help="Transformer/GRU width.")
group.add_argument("--cond_mask_prob", default=.1, type=float,
help="The probability of masking the condition during training."
" For classifier-free guidance learning.")
group.add_argument("--lambda_rcxyz", default=0.0, type=float, help="Joint positions loss.")
group.add_argument("--lambda_vel", default=0.0, type=float, help="Joint velocity loss.")
group.add_argument("--lambda_fc", default=0.0, type=float, help="Foot contact loss.")
group.add_argument("--unconstrained", action='store_true',
help="Model is trained unconditionally. That is, it is constrained by neither text nor action. "
"Currently tested on HumanAct12 only.")
def add_data_options(parser):
group = parser.add_argument_group('dataset')
group.add_argument("--dataset", default='humanml', choices=['humanml', 'kit', 'humanact12', 'uestc', 'motion_ours'], type=str,
help="Dataset name (choose from list).")
group.add_argument("--data_dir", default="", type=str,
help="If empty, will use defaults according to the specified dataset.")
group.add_argument("--single_seq_path", default="", type=str,
help="If empty, will use defaults according to the specified dataset.")
# window_size
group.add_argument("--window_size", default=30, type=int, help="Number of learning rate anneal steps.")
# inst_normalization; inst_normalization
group.add_argument("--inst_normalization", action='store_true', default=False,
help="If True, will enable to use an already existing save_dir.")
def add_training_options(parser):
group = parser.add_argument_group('training')
group.add_argument("--model_path", default="", type=str, ## model_path --> model_path
help="Path to model####.pt file to be sampled.")
group.add_argument("--input_text", default='', type=str,
help="Path to a text file lists text prompts to be synthesized. If empty, will take text prompts from dataset.")
group.add_argument("--save_dir", required=True, type=str,
help="Path to save checkpoints and results.")
group.add_argument("--overwrite", action='store_true',
help="If True, will enable to use an already existing save_dir.")
group.add_argument("--train_platform_type", default='NoPlatform', choices=['NoPlatform', 'ClearmlPlatform', 'TensorboardPlatform'], type=str,
help="Choose platform to log results. NoPlatform means no logging.")
group.add_argument("--lr", default=1e-4, type=float, help="Learning rate.")
group.add_argument("--weight_decay", default=0.0, type=float, help="Optimizer weight decay.")
group.add_argument("--lr_anneal_steps", default=0, type=int, help="Number of learning rate anneal steps.")
group.add_argument("--eval_batch_size", default=32, type=int,
help="Batch size during evaluation loop. Do not change this unless you know what you are doing. "
"T2m precision calculation is based on fixed batch size 32.")
group.add_argument("--eval_split", default='test', choices=['val', 'test'], type=str,
help="Which split to evaluate on during training.")
group.add_argument("--eval_during_training", action='store_true',
help="If True, will run evaluation during training.")
group.add_argument("--eval_rep_times", default=3, type=int,
help="Number of repetitions for evaluation loop during training.")
group.add_argument("--eval_num_samples", default=1_000, type=int,
help="If -1, will use all samples in the specified split.")
group.add_argument("--log_interval", default=1_000, type=int,
help="Log losses each N steps")
group.add_argument("--save_interval", default=50_000, type=int,
help="Save checkpoints and run evaluation each N steps")
group.add_argument("--num_steps", default=600_000000, type=int,
help="Training will stop after the specified number of steps.")
group.add_argument("--num_frames", default=60, type=int,
help="Limit for the maximal number of frames. In HumanML3D and KIT this field is ignored.")
group.add_argument("--resume_checkpoint", default="", type=str,
help="If not empty, will start from the specified checkpoint (path to model###.pt file).")
# group.add_argument("--debug", action='store_true',
# help="If True, will run evaluation during training.")
## with_dec_pos_emb
def add_sampling_options(parser):
group = parser.add_argument_group('sampling')
group.add_argument("--model_path", required=True, type=str,
help="Path to model####.pt file to be sampled.")
group.add_argument("--output_dir", default='', type=str,
help="Path to results dir (auto created by the script). "
"If empty, will create dir in parallel to checkpoint.")
group.add_argument("--num_samples", default=10, type=int,
help="Maximal number of prompts to sample, "
"if loading dataset from file, this field will be ignored.")
group.add_argument("--num_repetitions", default=3, type=int,
help="Number of repetitions, per sample (text prompt/action)")
group.add_argument("--guidance_param", default=2.5, type=float,
help="For classifier-free sampling - specifies the s parameter, as defined in the paper.")
def add_generate_options(parser):
group = parser.add_argument_group('generate')
group.add_argument("--motion_length", default=6.0, type=float,
help="The length of the sampled motion [in seconds]. "
"Maximum is 9.8 for HumanML3D (text-to-motion), and 2.0 for HumanAct12 (action-to-motion)")
group.add_argument("--input_text", default='', type=str,
help="Path to a text file lists text prompts to be synthesized. If empty, will take text prompts from dataset.")
group.add_argument("--action_file", default='', type=str,
help="Path to a text file that lists names of actions to be synthesized. Names must be a subset of dataset/uestc/info/action_classes.txt if sampling from uestc, "
"or a subset of [warm_up,walk,run,jump,drink,lift_dumbbell,sit,eat,turn steering wheel,phone,boxing,throw] if sampling from humanact12. "
"If no file is specified, will take action names from dataset.")
group.add_argument("--text_prompt", default='', type=str,
help="A text prompt to be generated. If empty, will take text prompts from dataset.")
group.add_argument("--action_name", default='', type=str,
help="An action name to be generated. If empty, will take text prompts from dataset.")
# group.add_argument("--debug", action='store_true',
# help="If True, will run evaluation during training.")
def add_edit_options(parser):
group = parser.add_argument_group('edit')
group.add_argument("--edit_mode", default='in_between', choices=['in_between', 'upper_body'], type=str,
help="Defines which parts of the input motion will be edited.\n"
"(1) in_between - suffix and prefix motion taken from input motion, "
"middle motion is generated.\n"
"(2) upper_body - lower body joints taken from input motion, "
"upper body is generated.")
group.add_argument("--text_condition", default='', type=str,
help="Editing will be conditioned on this text prompt. "
"If empty, will perform unconditioned editing.")
group.add_argument("--prefix_end", default=0.25, type=float,
help="For in_between editing - Defines the end of input prefix (ratio from all frames).")
group.add_argument("--suffix_start", default=0.75, type=float,
help="For in_between editing - Defines the start of input suffix (ratio from all frames).")
def add_evaluation_options(parser):
group = parser.add_argument_group('eval')
group.add_argument("--model_path", required=True, type=str,
help="Path to model####.pt file to be sampled.")
group.add_argument("--eval_mode", default='wo_mm', choices=['wo_mm', 'mm_short', 'debug', 'full'], type=str,
help="wo_mm (t2m only) - 20 repetitions without multi-modality metric; "
"mm_short (t2m only) - 5 repetitions with multi-modality metric; "
"debug - short run, less accurate results."
"full (a2m only) - 20 repetitions.")
group.add_argument("--guidance_param", default=2.5, type=float,
help="For classifier-free sampling - specifies the s parameter, as defined in the paper.")
def get_cond_mode(args):
# unconstrained, constrained, text conditional #
if args.unconstrained:
cond_mode = 'no_cond'
# elif args.dataset in ['kit', 'humanml', 'motion_ours']:
# cond_mode = 'text'
elif args.dataset in ['kit', 'humanml', 'motion_ours']:
cond_mode = 'text'
else:
cond_mode = 'action'
print(f"dataset: {args.dataset}, cond_mode: {cond_mode}")
return cond_mode
def train_args():
#### === useufl arguments for training === ####
parser = ArgumentParser()
add_base_options(parser)
add_data_options(parser)
add_model_options(parser)
add_diffusion_options(parser)
add_training_options(parser)
return parser.parse_args()
def generate_args():
parser = ArgumentParser()
# args specified by the user: (all other will be loaded from the model)
add_base_options(parser)
add_sampling_options(parser)
add_generate_options(parser)
args = parse_and_load_from_model(parser)
cond_mode = get_cond_mode(args)
print(f"cond_mode: {cond_mode}")
if (args.input_text or args.text_prompt) and cond_mode != 'text':
raise Exception('Arguments input_text and text_prompt should not be used for an action condition. Please use action_file or action_name.')
elif args.action_file or args.action_name and cond_mode != 'action':
raise Exception('Arguments action_file and action_name should not be used for a text condition. Please use input_text or text_prompt.')
return args
def edit_args():
parser = ArgumentParser()
# args specified by the user: (all other will be loaded from the model)
add_base_options(parser)
add_sampling_options(parser)
add_edit_options(parser)
return parse_and_load_from_model(parser)
def evaluation_parser():
parser = ArgumentParser()
# args specified by the user: (all other will be loaded from the model)
add_base_options(parser)
add_evaluation_options(parser)
return parse_and_load_from_model(parser) |