Spaces:
Runtime error
Runtime error
File size: 30,473 Bytes
d6d3a5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
# import sonnet as snt
# from tensor2tensor.layers import common_attention
# from tensor2tensor.layers import common_layers
# import tensorflow.compat.v1 as tf
# from tensorflow.python.framework import function
# import tensorflow_probability as tfp
import numpy as np
import torch.nn as nn
# import layer_utils
import torch
# import data_utils_torch as data_utils
import math ##
import os
# from options.options import opt
# import model_util
#
### smoothness
### whether in the object -> using vertices and using joints ###
###
import trimesh
def batched_index_select_ours(values, indices, dim = 1):
value_dims = values.shape[(dim + 1):]
values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices))
indices = indices[(..., *((None,) * len(value_dims)))]
indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims)
value_expand_len = len(indices_shape) - (dim + 1)
values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)]
value_expand_shape = [-1] * len(values.shape)
expand_slice = slice(dim, (dim + value_expand_len))
value_expand_shape[expand_slice] = indices.shape[expand_slice]
values = values.expand(*value_expand_shape)
dim += value_expand_len
return values.gather(dim, indices)
def calculate_joint_smoothness(joint_seq):
# joint_seq: nf x nnjoints x 3
disp_seq = joint_seq[1:] - joint_seq[:-1] # (nf - 1) x nnjoints x 3 #
disp_seq = np.sum(disp_seq ** 2, axis=-1)
disp_seq = np.mean(disp_seq)
# disp_seq = np.
disp_seq = disp_seq.item()
return disp_seq
def calculate_penetration_depth(subj_seq, obj_verts, obj_faces):
# obj_verts: nn_verts x 3 -> numpy array
# obj_faces: nn_faces x 3 -> numpy array
# obj_mesh = trimesh.Trimesh(vertices=obj_verts, faces=obj_faces,
# process=False, use_embree=True)
obj_mesh = trimesh.Trimesh(vertices=obj_verts, faces=obj_faces,
)
# subj_seq: nf x nn_subj_pts x 3 #
tot_penetration_depth = []
for i_f in range(subj_seq.shape[0]): ## total sequence length ##
# for i_f in range(10):
cur_subj_seq = subj_seq[i_f]
cur_subj_seq_in_obj = obj_mesh.contains(cur_subj_seq) # nn_subj_pts #
dist_cur_subj_to_obj_verts = np.sum( # nn_subj_pts x nn_obj_pts #
(np.reshape(cur_subj_seq, (cur_subj_seq.shape[0], 1, 3)) - np.reshape(obj_verts, (1, obj_verts.shape[0], 3))) ** 2, axis=-1
)
# dist_cur_subj_to_obj_verts
nearest_obj_dist = np.min(dist_cur_subj_to_obj_verts, axis=-1) # nn_subj_pts
nearest_obj_dist = np.sqrt(nearest_obj_dist)
cur_pene_depth = np.zeros_like(nearest_obj_dist)
cur_pene_depth[cur_subj_seq_in_obj] = nearest_obj_dist[cur_subj_seq_in_obj]
tot_penetration_depth.append(cur_pene_depth)
tot_penetration_depth = np.stack(tot_penetration_depth, axis=0) # nf x nn_subj_pts
tot_penetration_depth = np.mean(tot_penetration_depth).item()
return tot_penetration_depth
def calculate_proximity_dist(subj_seq, subj_seq_gt, obj_verts, obj_faces):
# obj_verts: nn_verts x 3 -> numpy array
# obj_faces: nn_faces x 3 -> numpy array
# obj_mesh = trimesh.Trimesh(vertices=obj_verts, faces=obj_faces,
# process=False, use_embree=True)
obj_mesh = trimesh.Trimesh(vertices=obj_verts, faces=obj_faces,
)
# subj_seq: nf x nn_subj_pts x 3 #
tot_penetration_depth = []
# nf x nn_subj_pts x 3 # # nf x nn_subj_pts x nn_obj_pts
dist_subj_seq_to_obj_verts_gt = np.sum(
(np.reshape(subj_seq_gt, (subj_seq_gt.shape[0], subj_seq_gt.shape[1], 1, 3)) - np.reshape(obj_verts, (1, 1, obj_verts.shape[0], 3))) ** 2, axis=-1
)
minn_dist_subj_seq_to_obj_verts_gt = np.min(dist_subj_seq_to_obj_verts_gt, axis=-1) # nf x nn_subj_pts
# nf x nn_subj_pts x 3 # # nf x nn_subj_pts x nn_obj_pts
dist_subj_seq_to_obj_verts = np.sum(
(np.reshape(subj_seq, (subj_seq.shape[0], subj_seq.shape[1], 1, 3)) - np.reshape(obj_verts, (1, 1, obj_verts.shape[0], 3))) ** 2, axis=-1
)
minn_dist_subj_seq_to_obj_verts = np.min(dist_subj_seq_to_obj_verts, axis=-1) # nf x nn_subj_pts
dist_minn_dist = np.mean(
(minn_dist_subj_seq_to_obj_verts_gt[46:][..., -5:-3] - minn_dist_subj_seq_to_obj_verts[46:][..., -5:-3]) ** 2
).item()
# dist_minn_dist = np.sum(
# (minn_dist_subj_seq_to_obj_verts_gt[46:][..., -5:-3] - minn_dist_subj_seq_to_obj_verts[46:][..., -5:-3]) ** 2, axis=-1
# )
# dist_minn_dist = np.mean(
# (minn_dist_subj_seq_to_obj_verts_gt - minn_dist_subj_seq_to_obj_verts) ** 2
# ).item()
return dist_minn_dist
for i_f in range(subj_seq.shape[0]):
cur_subj_seq = subj_seq[i_f]
cur_subj_seq_in_obj = obj_mesh.contains(cur_subj_seq) # nn_subj_pts #
dist_cur_subj_to_obj_verts = np.sum( # nn_subj_pts x nn_obj_pts #
(np.reshape(cur_subj_seq, (cur_subj_seq.shape[0], 1, 3)) - np.reshape(obj_verts, (1, obj_verts.shape[0], 3))) ** 2, axis=-1
)
# dist_cur_subj_to_obj_verts
nearest_obj_dist = np.min(dist_cur_subj_to_obj_verts, axis=-1) # nn_subj_pts
nearest_obj_dist = np.sqrt(nearest_obj_dist)
cur_pene_depth = np.zeros_like(nearest_obj_dist)
cur_pene_depth[cur_subj_seq_in_obj] = nearest_obj_dist[cur_subj_seq_in_obj]
tot_penetration_depth.append(cur_pene_depth)
tot_penetration_depth = np.stack(tot_penetration_depth, axis=0) # nf x nn_subj_pts
tot_penetration_depth = np.mean(tot_penetration_depth).item()
return tot_penetration_depth
def calculate_moving_consistency(base_pts_trans, joints_trans):
# base_pts_trans: nf x nn_base_pts x 3 #
# joints_trans: nf x nn_jts x 3 #
base_pts_trans = torch.from_numpy(base_pts_trans).float()
joints_trans = torch.from_numpy(joints_trans).float()
# dist_joints_to_base_pts = np.sum
dist_joints_to_base_pts = torch.sum(
(joints_trans.unsqueeze(2) - base_pts_trans.unsqueeze(1)) ** 2, dim=-1 # nf x nn_jts x nn_base_pts #
)
dist_joints_to_base_pts = torch.sqrt(dist_joints_to_base_pts)
dist_joints_to_base_pts, joints_to_base_pts_minn_idxes = torch.min(dist_joints_to_base_pts, dim=-1)
minn_dist_joints_to_base_pts_across_joints, minn_dist_joints_to_base_pts_idxes = torch.min(dist_joints_to_base_pts, dim=-1) # (nf - 1)
minn_dist_joints_to_base_pts_idxes = minn_dist_joints_to_base_pts_idxes[:-1]
disp_joints_to_base_pts_minn_idxes = joints_to_base_pts_minn_idxes[:-1]
disp_base_pts = base_pts_trans[1:] - base_pts_trans[:-1]
disp_joints = joints_trans[1:] - joints_trans[:-1] # (nf - 1) x nn_jts x 3
dist_joints_to_base_pts = dist_joints_to_base_pts[:-1]
k_f = 100.
k = torch.exp(
-k_f * dist_joints_to_base_pts
)
disp_joints_base_pts = batched_index_select_ours(disp_base_pts, indices=disp_joints_to_base_pts_minn_idxes, dim=1) # (nf - 1) x nn_jts x 3
nearest_joints_disp = batched_index_select_ours(disp_joints_base_pts, indices=minn_dist_joints_to_base_pts_idxes.unsqueeze(-1), dim=1) # (nf - 1) x 1
nearest_joints_disp = nearest_joints_disp.squeeze(1) # (nf - 1) x 3 #
disp_joints = batched_index_select_ours(disp_joints, indices=minn_dist_joints_to_base_pts_idxes.unsqueeze(-1), dim=1).squeeze(1) # (nf - 1) x 3
nearest_k = batched_index_select_ours(k, indices=minn_dist_joints_to_base_pts_idxes.unsqueeze(-1), dim=1).squeeze(1) # (nf - 1)
##### use k for weighting disp ##### # disp_joints for the joints # the delta distance #
disp_joints_to_nearest_base_pts = disp_joints * nearest_k.unsqueeze(-1) # ### (nf - 1 ) x 3
diff_disp_joints_to_nearest_base_pts_disp = torch.sum(
(disp_joints_to_nearest_base_pts - nearest_joints_disp) ** 2, dim=-1 # squared joint jdistance pairs #
)
diff_disp_joints_base_pts = diff_disp_joints_to_nearest_base_pts_disp.mean()
##### use k for weighting disp #####
# diff_disp_joints_base_pts = torch.sum(
# )
##### use k for weighting diff #####
# diff_disp_joints_base_pts = torch.sum(
# (disp_joints - disp_joints_base_pts) ** 2, dim=-1 # (nf - 1) x nn_jts
# )
# diff_disp_joints_base_pts = torch.sqrt(diff_disp_joints_base_pts) * k
# diff_disp_joints_base_pts = diff_disp_joints_base_pts.mean() # # mean of the base_pts #
##### use k for weighting diff #####
return diff_disp_joints_base_pts.item()
# static grasping stability -> the gravity direction and the linear combination of contact directions
# dynamic grasping stability -> 1) rotation and acceleration dynamics of the object 2) forces added by contact points
def calculate_grasping_stability(hand_verts, obj_verts, obj_normals, obj_grav_dirs=None): # obj_grav_dir: nf x 3 --> negative to the object gravity dir here #
# hand_verts: nf x nn_verts x 3 #
# obj_verts: nf x nn_obj_verts x 3 #
# obj_normals: nf x nn_obj_normals x 3 #
# obj_grav_dirs: nf x 3 # --> for object gravity directions #
contact_thres = 0.002 # 2mm #
# gravity_dir = np.zeros((3,),dtype=np.float32)
if obj_grav_dirs is None:
gravity_dir = np.array([0., 1., 0.], dtype=np.float32) # (3,) for the gravity direction # # negative to the gravity direction #
# concert to
# if not isinstance(hand_verts, torch.Tensor):
# hand_verts = torch.from_numpy(hand_verts).float().cuda()
# # dir_dim x nn_candidate_dirs xxxx nn_candidate_dirs x 1 --> dir_dim x 1 # a leasts square problem?
nn_hand_verts = hand_verts.shape[1] # nf x nn_hand_verts x 3 #
nn_obj_verts = obj_verts.shape[1] # nf x nn_obj_verts x 3 #
nn_frames = hand_verts.shape[0]
dist_hand_verts_to_obj_verts = np.sum(
(hand_verts.reshape(nn_frames, nn_hand_verts, 1, 3) - obj_verts.reshape(nn_frames, 1, nn_obj_verts, 3)) ** 2, axis=-1 # nf x nn_hand_verts x nn_obj_verts
)
minn_dist_hand_verts_to_obj_verts_idxes = np.argmin(dist_hand_verts_to_obj_verts, axis=-1) # nf x nn_hand_verts
minn_dist_hand_verts_to_obj_verts = np.min(dist_hand_verts_to_obj_verts, axis=-1) # nf x nn_hand_verts #
# minn_dist_hand_vert
hand_verts_in_contact_mask = minn_dist_hand_verts_to_obj_verts <= contact_thres ## nf x nn_hand_verts #
# nf x nn_hand_verts #
obj_normals_th = torch.from_numpy(obj_normals).float()
minn_dist_hand_verts_to_obj_verts_idxes_th = torch.from_numpy(minn_dist_hand_verts_to_obj_verts_idxes).long()
hand_verts_in_contact_obj_normals_th = batched_index_select_ours(obj_normals_th, minn_dist_hand_verts_to_obj_verts_idxes_th, dim=1) # nf x nn_hand_verts x 3
hand_verts_in_contact_obj_normals = hand_verts_in_contact_obj_normals_th.numpy()
# hand_verts_in_contact_obj_normals = obj_normals[ minn_dist_hand_verts_to_obj_verts_idxes] # nf x nn_hand_verts x 3 # for obj normals in contact with hand verts #
# print(f"Selected hand_verts_in_contact_obj_normals: {hand_verts_in_contact_obj_normals.shape}")
hand_verts_in_contact_obj_normals = hand_verts_in_contact_obj_normals * -1.0
diff_cloest_dir_to_gravity_dir = []
for i_f in range(nn_frames):
if obj_grav_dirs is not None:
gravity_dir = obj_grav_dirs[i_f]
cur_fr_hand_verts_in_contact_mask = hand_verts_in_contact_mask[i_f] # nn_hnad_verts #
cur_fr_hand_verts_in_contact_obj_normals = hand_verts_in_contact_obj_normals[i_f] # nn_hand_verts x 3 #
if np.sum(cur_fr_hand_verts_in_contact_mask.astype(np.float32)).item() == 0:
cur_diff_cloest_dir_to_gravity_dir = np.sqrt(np.sum(gravity_dir ** 2, axis=0)).item()
diff_cloest_dir_to_gravity_dir.append(cur_diff_cloest_dir_to_gravity_dir)
continue
# print(f"cur_fr_hand_verts_in_contact_obj_normals: {cur_fr_hand_verts_in_contact_obj_normals.shape}, cur_fr_hand_verts_in_contact_mask: {cur_fr_hand_verts_in_contact_mask.shape}")
cur_fr_hand_verts_in_contact_obj_normals = cur_fr_hand_verts_in_contact_obj_normals[cur_fr_hand_verts_in_contact_mask] ## nn_in_contact_pts x 3 #
in_contact_coeff, res, _, _ = np.linalg.lstsq(cur_fr_hand_verts_in_contact_obj_normals.T, gravity_dir.reshape(3, 1)) # nn_in_contact_pts x 1 as the combination coefficients #
# print(f"in_contact_coeff: {in_contact_coeff.shape}")
# print()
combined_in_contact_dir = np.matmul(
cur_fr_hand_verts_in_contact_obj_normals.T, in_contact_coeff
)
combined_in_contact_dir = combined_in_contact_dir.reshape(3,)
diff_combined_in_contact_dir_to_gravity_dir = np.sum(
(combined_in_contact_dir - gravity_dir) ** 2, axis=-1
).item() # for the in_contact direction
diff_cloest_dir_to_gravity_dir.append(diff_combined_in_contact_dir_to_gravity_dir)
diff_cloest_dir_to_gravity_dir = sum(diff_cloest_dir_to_gravity_dir) / float(len(diff_cloest_dir_to_gravity_dir))
return diff_cloest_dir_to_gravity_dir
### metrics ### # avg acc metrics ##
def get_acc_metrics(outputs, gt_joints):
#
# outputs: ws x nn_jts x 3 #
# gt_joints: ws x nn_jts x 3 #
dist_outputs_gt_joints = np.sqrt(np.sum((outputs - gt_joints) ** 2, axis=-1)) # ws x nn_jts #
avg_dist_outputs_gt_joints = np.mean(dist_outputs_gt_joints).item()
return avg_dist_outputs_gt_joints #### m -> the average ###
# smoothness: 4.6728710003662854e-05, average penetration depth: 6.894875681965049e-05, minn_dist_dist: 4.546074229087353e-07
# smoothness: 4.832542617805302e-05, average penetration depth: 4.242679380969064e-05, minn_dist_dist: 3.059734870003453e-07
# jts and rel: smoothness: 4.6728710003662854e-05, average penetration depth: 6.894875681965049e-05, minn_dist_dist: 4.624256727994665e-07
# jts: smoothness: 4.832542617805302e-05, average penetration depth: 4.242679380969064e-05, minn_dist_dist: 4.4718556466597084e-07
#
# T = 400
# smoothness: 3.935288259526715e-05, average penetration depth: 0.000366439988587091, minn_dist_dist: 8.311451183183466e-07
# smoothness: 0.00011870301386807114, average penetration depth: 0.0002747326595483027, minn_dist_dist: 8.44164813606991e-07
# smoothness: 6.404393207048997e-05, average penetration depth: 0.00037923554579558723, minn_dist_dist: 1.3080925943256124e-06 #
# smoothness: 3.935288259526715e-05, average penetration depth: 0.000366439988587091, minn_dist_dist: 8.311451183183466e-07 # 3
# # 3.0236743775145877e-07, 5.490092818343169e-07
# the examples on different noise scales #
# T = 300
# smoothness: 4.595715654431842e-05, average penetration depth: 0.00021960893150693885, minn_dist_dist: 5.6245558029369e-07 -- jts only
# smoothness: 0.00011870301386807114, average penetration depth: 0.0002747326595483027, minn_dist_dist: 8.44164813606991e-07
#
def get_resplit_test_idxes():
test_split_mesh_nm_to_seq_idxes = "/home/xueyi/sim/motion-diffusion-model/test_mesh_nm_to_test_seqs.npy"
test_split_mesh_nm_to_seq_idxes = np.load(test_split_mesh_nm_to_seq_idxes, allow_pickle=True).item()
tot_test_seq_idxes = []
for tst_nm in test_split_mesh_nm_to_seq_idxes:
tot_test_seq_idxes = tot_test_seq_idxes + test_split_mesh_nm_to_seq_idxes[tst_nm]
return tot_test_seq_idxes
# 8.121088892826279e-07
# 2.951481956519773e-07
# smoothness: 6.213585584191605e-05, average penetration depth: 4.278580710096256e-05, minn_dist_dist: 7.753524560089469e-07
# smoothness: 5.4274405556498095e-05, average penetration depth: 3.388783391933507e-05, minn_dist_dist: 5.682716970124003e-07
if __name__=='__main__':
# predicted_info_fn = "/home/xueyi/sim/motion-diffusion-model/save/my_humanml_trans_enc_512/predicted_infos.npy"
# predicted_infos_jtsonly.npy # predicted infos jts ##
tot_APD = []
tot_smoothness = []
tot_proximity_error = []
tot_consistency_value = []
tot_stability = []
st_idx = 0
ed_idx = 38
st_idx = 58
ed_idx = 111 #
st_idx = 0
ed_idx = 20 #
st_idx = 139
ed_idx = 158 #
st_idx = 139
ed_idx = 190 #
st_idx = 0
ed_idx = 246 #
# ed_idx = 160
tot_seq_nn = 0
maxx_seq_nn = 150
resplit = False
resplit = True
tot_test_seq_idxes = range(st_idx, ed_idx, 1)
if resplit:
tot_test_seq_idxes = get_resplit_test_idxes()
seq_root = "/data1/sim/GRAB_processed/train"
# st_idx = 58
# ed_idx = 111
# st_idx = 0
# ed_idx = 246
# for test_seq_idx in range(1, 102, 10):
# for test_seq_idx in range(1, 102, 1):
# for test_seq_idx in range(1, 11, 1):
for test_seq_idx in tot_test_seq_idxes:
if tot_seq_nn >= maxx_seq_nn:
break
# for test_seq_idx in range(36, 37, 1):
seed = 31
seed = 77
test_tag = "cond_jtsobj"
# test_tag = "jts_only"
# test_tag = "rep_only" #
test_tag = "rep_only_real"
test_tag = "rep_only_real_sel_base_0"
test_tag = "jts_only"
test_tag = "jts_rep_28_cbd"
test_tag = "rep_only_real_mean_"
# /data1/sim/mdm/eval_save/predicted_infos_seq_37_seed_77_tag_jts_only_gaussian_hoi4d_t_300_.npy
test_tag = "jts_only_gaussian_hoi4d_t_300_"
# sv_predicted_info_fn = f"predicted_infos_seq_{test_seq_idx}_seed_{seed}_tag_{test_tag}.npy"
# sv_predicted_info_fn = f"predicted_infos_seq_{test_seq_idx}_seed_{seed}_tag_rep_only_real_sel_base_0.npy"
# /home/xueyi/sim/motion-diffusion-model/save/my_humanml_trans_enc_512/predicted_infos_seq_101_seed_31_tag_rep_only_real_sel_base_mean.npy
# sv_predicted_info_fn = f"predicted_infos_seq_{test_seq_idx}_seed_{seed}_tag_rep_only_real_sel_base_mean.npy"
sv_predicted_info_fn = f"predicted_infos_seq_{test_seq_idx}_seed_{seed}_tag_{test_tag}.npy"
# /home/xueyi/sim/motion-diffusion-model/save/my_humanml_trans_enc_512/predicted_infos_seq_101_seed_77_tag_rep_only_real_sel_base_mean.npy
# predicted_infos_seq_101_seed_77_tag_jts_rep_28_cbd.npy
# sv_predicted_info_fn = f"predicted_infos_seq_{test_seq_idx}_seed_{seed}_tag_jts_only.npy"
test_tag = "rep_only_real_sel_base_mean"
seed = 77
test_tag = "jts_only"
seed = 77
sv_predicted_info_fn = f"predicted_infos_seq_{test_seq_idx}_seed_{seed}_tag_{test_tag}.npy"
test_tag = "jts_rep_28_cbd"
seed = 77
# /home/xueyi/sim/motion-diffusion-model/save/my_humanml_trans_enc_512/predicted_infos_seq_101_seed_77_tag_jts_rep_55_cbd.npy
test_tag = "jts_rep_55_cbd"
seed = 77
test_tag = "jts_rep_28_cbd_t_400"
seed = 77
test_tag = "jts_only_t_400"
test_tag = "jts_rep_28_cbd_t_400_real"
test_tag = "jts_rep_19_cbd_t_400_real"
test_tag = "rep_only_real_sel_base_0_t_400"
test_tag = "jts_rep_19_cbd_t_300_real"
test_tag = "jts_rep_19_cbd_t_300_real"
test_tag = "jts_only_gaussian_hoi4d_t_300_"
sv_predicted_info_fn = f"predicted_infos_seq_{test_seq_idx}_seed_{seed}_tag_{test_tag}.npy"
# /home/xueyi/sim/motion-diffusion-model/save/my_humanml_trans_enc_512/predicted_infos_seq_101_seed_77_tag_jts_rep_55_cbd.npy
sv_dir = "/home/xueyi/sim/motion-diffusion-model/save/my_humanml_trans_enc_512"
# /data1/sim/mdm/eval_save/predicted_infos_seq_2_seed_77_tag_rep_only_real_sel_base_mean_all_noise_.npy
# /data1/sim/mdm/eval_save/predicted_infos_seq_7_seed_77_tag_rep_only_real_mean_.npy
sv_dir = "/data1/sim/mdm/eval_save"
sv_dir_ours = "/data1/sim/mdm/eval_save"
# /data2/sim/eval_save/GRAB
sv_dir = "/data2/sim/eval_save/GRAB"
sv_dir_ours = "/data2/sim/eval_save/GRAB"
# test_tag = "jts_rep_19_cbd_t_300_real" # all noise ##
test_tag = "jts_only"
test_tag = "rep_only_real_mean_"
test_tag = "rep_only_real_mean_same_noise_"
test_tag = "rep_only_real_mean_same_noise_t_400_"
test_tag = "rep_only_real_mean_t_400_"
test_tag = "rep_only_real_mean_t_200_"
test_tag = "rep_only_real_mean_t_400_nores_"
# f"/data1/sim/mdm/eval_save/predicted_infos_seq_{test_seq_idx}_seed_77_tag_jts_only_uniform_t_300_.npy"
test_tag = "jts_only_uniform_t_300_"
# /data1/sim/mdm/eval_save/predicted_infos_seq_245_seed_77_tag_jts_repmean_only_uniform_t_200_.npy
test_tag = "jts_repmean_only_uniform_t_200_"
# test_tag = "rep_only_real_mean_same_noise_"
# test_tag = "rep_only_real_mean_"
# test_tag = "rep_only_real_sel_base_mean_all_noise_"
test_tag = "jts_only_gaussian_hoi4d_t_300_"
# /data1/sim/mdm/eval_save/predicted_infos_seq_37_seed_77_tag_rep_only_mean_shape_hoi4d_t_200_res_jts_.npy
test_tag = "rep_only_mean_shape_hoi4d_t_200_res_jts_"
test_tag = "rep_res_jts_grab_t_200_scale_1_"
test_tag = "rep_res_jts_grab_t_200_scale_2_" #
test_tag = "jts_grab_t_400_scale_1_"
test_tag = "jts_grab_t_400_scale_2_"
test_tag = "jts_grab_t_400_scale_3_"
test_tag = "rep_jts_grab_t_200_resplit_res_jts_"
test_tag = "rep_jts_grab_t_400_resplit_"
# rep_only_mean_shape_hoi4d_t_200_res_jts_
# # rep_only_mean_shape_hoi4d_t_400_
# # test_tag = "rep_only_mean_shape_hoi4d_t_400_"
# test_tag = "jts_only_beta_t_300_"
# /data1/sim/mdm/eval_save_toch/14.npy
seed = 77
seed = 11
seed = 22
# # /data1/sim/mdm/eval_save/predicted_infos_seq_7_seed_77_tag_jts_only.npy
# /data1/sim/mdm/eval_save/predicted_infos_seq_7_seed_77_tag_rep_only_real_mean_.npy
# /data1/sim/mdm/eval_save/predicted_infos_seq_7_seed_77_tag_rep_only_real_mean_same_noise_.npy
sv_predicted_info_fn = f"predicted_infos_seq_{test_seq_idx}_seed_{seed}_tag_{test_tag}.npy"
sv_predicted_info_fn = f"predicted_infos_seq_{test_seq_idx}_seed_{seed}_tag_{test_tag}.npy" # sv predicted info fn ##
# predicted_infos_seq_99_seed_77_tag_jts_only_beta_t_300_.npy ### seed and seed and seed ###
sv_predicted_info_fn_ours = f"predicted_infos_seq_{test_seq_idx}_seed_{seed}_tag_{test_tag}.npy"
# predicted_infos_seq_99_seed_77_tag_jts_only_beta_t_300_.npy ### seed and seed and seed ###
sv_predicted_info_fn_ours = f"predicted_infos_seq_{test_seq_idx}_seed_{seed}_tag_{test_tag}.npy"
### for toch ###
# sv_dir = "/data1/sim/mdm/eval_save_toch"
# # other_noise_grab
# sv_predicted_info_fn = f"{test_seq_idx}.npy"
# # sv_predicted_info_fn = f"other_noise_grab_{test_seq_idx}.npy"
### for toch ###
sv_predicted_info_fn = os.path.join(sv_dir, sv_predicted_info_fn)
predicted_ours_info_fn = os.path.join(sv_dir_ours, sv_predicted_info_fn_ours)
# /data1/sim/mdm/eval_save/optimized_infos_sv_dict_seq_37_seed_77_tag_rep_only_mean_shape_hoi4d_t_200_res_jts_.npy
# sv_optimized_info_fn = f"optimized_infos_sv_dict_seq_{test_seq_idx}_seed_{seed}_tag_{test_tag}.npy"
# sv_optimized_info_fn = os.path.join(sv_dir_ours, sv_optimized_info_fn) #
#### only for predicted info fn ####
# if os.path.exists(sv_predicted_info_fn):
# data = np.load(sv_predicted_info_fn, allow_pickle=True).item()
# # targets = data['targets']
# outputs = data['outputs']
# obj_verts = data['obj_verts'][0]
# obj_faces = data['obj_faces']
# tot_base_pts = data["tot_base_pts"][0] # total base points # # bsz x nnbasepts x 3 #
# gt_joints = data['tot_gt_rhand_joints'][0] # gt rhand joints? # object model; object verts here #
# # tot_rhand_joints = data["tot_rhand_joints"][0]
# print(f"gt_joints: {gt_joints.shape}")
# smoothness = calculate_joint_smoothness(outputs)
# APD = calculate_penetration_depth(outputs, obj_verts, obj_faces)
# dist_dist_avg = calculate_proximity_dist(outputs, gt_joints, obj_verts, obj_faces)
# print(f"smoothness: {smoothness}, average penetration depth: {APD}, minn_dist_dist: {dist_dist_avg}")
# tot_APD.append(APD)
# tot_smoothness.append(smoothness)
# tot_proximity_error.append(dist_dist_avg)
# print(f"for sequence {test_seq_idx}, APD: {APD}, smoothness: {smoothness}")
#### only for predicted info fn ####
# if os.path.exists(sv_predicted_info_fn) and os.path.exists(sv_optimized_info_fn):
### sv optimized info fn ###
print(f"predicted info fn: {sv_predicted_info_fn}")
ws = 60
if os.path.exists(sv_predicted_info_fn) and os.path.exists(predicted_ours_info_fn):
print(f"predicted info fn: {sv_predicted_info_fn}")
tot_seq_nn += 1
# if os.path.exists(sv_predicted_info_fn) and os.path.exists(predicted_ours_info_fn) and os.path.exists(sv_optimized_info_fn):
data = np.load(sv_predicted_info_fn, allow_pickle=True).item()
# targets = data['targets']
outputs = data['outputs'][:ws]
obj_verts = data['obj_verts'][0]
obj_faces = data['obj_faces']
tot_base_pts = data["tot_base_pts"][0] # total base points # # bsz x nnbasepts x 3 #
gt_joints = data['tot_gt_rhand_joints'][0] # total gt rhand joints #
### for toch ####
# ours_data = np.load(predicted_ours_info_fn, allow_pickle=True).item()
# obj_verts = ours_data['obj_verts'][0]
# obj_faces = ours_data['obj_faces']
# gt_joints = data['tot_gt_rhand_joints'][:ws] # [0]
### for toch ###
### optimized sv dict ###
### optimized sv dict ###
# optimized_sv_dict = np.load(sv_optimized_info_fn, allow_pickle=True).item()
# outputs = optimized_sv_dict['optimized_out_hand_joints'] # nf x nn_joints x 3 #
# # outputs_vert =
# tot_obj_rot = data['tot_obj_rot'][0] # ws x 3 x 3 ---> obj_rot; #
# tot_obj_transl = data['tot_obj_transl'][0] # nf x 3
# outputs = np.matmul(
# outputs - tot_obj_transl.reshape(tot_obj_transl.shape[0], 1, tot_obj_transl.shape[1]), np.transpose(tot_obj_rot, (0, 2, 1)) # nf x nn_joints x 3 --> as the transformed output joints ##
# )
### optimized sv dict ###
# tot_rhand_joints = data["tot_rhand_joints"][0]
print(f"gt_joints: {gt_joints.shape}")
smoothness = calculate_joint_smoothness(outputs)
# APD = calculate_penetration_depth(outputs, obj_verts, obj_faces)
APD = 0.
dist_dist_avg = calculate_proximity_dist(outputs, gt_joints, obj_verts, obj_faces)
tot_obj_rot = data['tot_obj_rot'][0] # ws x 3 x 3 ---> obj_rot; #
tot_obj_transl = data['tot_obj_transl'][0] # nf x 3
# outputs = targets
print(f"outputs: {outputs.shape}")
### for toch ####
# tot_obj_rot = ours_data['tot_obj_rot'][0] # ws x 3 x 3 ---> obj_rot; #
# tot_obj_transl = ours_data['tot_obj_transl'][0] # nf x 3
# tot_base_pts = ours_data["tot_base_pts"][0]
### for toch ###
# calculate_grasping_stability(hand_verts, obj_verts, obj_normals, obj_grav_dirs=None): # obj_grav_dir: nf x 3 --> negative to the object gravity dir here #
#### optimized_sv_dict ####
# outputs_verts = optimized_sv_dict["optimized_out_hand_verts"] # nf x nn_verts x 3 #
# outputs_verts = np.matmul(
# outputs_verts - tot_obj_transl.reshape(tot_obj_transl.shape[0], 1, tot_obj_transl.shape[1]), np.transpose(tot_obj_rot, (0, 2, 1))
# )
### for toch 3##
# outputs_verts = data["obj_verts"]
# ### for toch ##
# # outputs_verts
# tot_base_pts_exp = np.repeat(tot_base_pts.reshape(1, tot_base_pts.shape[0], 3), repeats=outputs_verts.shape[0], axis=0) # nf x nn_obj_verts x 3
tot_base_normals = data['tot_base_normals'][0]
# ### for toch ###
# tot_base_normals = ours_data['tot_base_normals'][0]
# # ### for toch ###
# tot_base_normals_exp = np.repeat(tot_base_normals.reshape(1, tot_base_normals.shape[0], 3), repeats=outputs_verts.shape[0], axis=0)
# obj_grav_dirs = np.zeros((outputs_verts.shape[0], 3), dtype=np.float32) # obj_grav_dirs #
# obj_grav_dirs[:, 1] = 1.
# cur_avg_stability = calculate_grasping_stability(outputs_verts, tot_base_pts_exp, tot_base_normals_exp, obj_grav_dirs=obj_grav_dirs)
# if cur_avg_stability < 100.:
# tot_stability.append(cur_avg_stability) # for the current stability values #
# print(f"cur_avg_stability: {cur_avg_stability}")
#### optimized_sv_dict ####
### get joints_trans and base_pts_trans ###
joints_trans = np.matmul(outputs, tot_obj_rot) + tot_obj_transl.reshape(tot_obj_transl.shape[0], 1, tot_obj_transl.shape[1]) #
base_pts_trans = np.matmul(tot_base_pts.reshape(1, tot_base_pts.shape[0], 3), tot_obj_rot) + tot_obj_transl.reshape(tot_obj_transl.shape[0], 1, tot_obj_transl.shape[1])
### get joints_trans and base_pts_trans ###
### calculate moving consistency ### # moving #
consistency_value = calculate_moving_consistency(base_pts_trans, joints_trans)
print(f"smoothness: {smoothness}, average penetration depth: {APD}, minn_dist_dist: {dist_dist_avg}, consistency_value: {consistency_value}")
tot_APD.append(APD)
tot_smoothness.append(smoothness)
tot_proximity_error.append(dist_dist_avg)
tot_consistency_value.append(consistency_value)
# print(f"for sequence {test_seq_idx}, APD: {APD}, smoothness: {smoothness}")
avg_APD = sum(tot_APD) / float(len(tot_APD)) ## total penetration depth
avg_smoothness = sum(tot_smoothness) / float(len(tot_smoothness))
avg_proximity_error = sum(tot_proximity_error) / float(len(tot_proximity_error))
avg_consistency_value = sum(tot_consistency_value) / float(len(tot_consistency_value))
if len(tot_stability) > 0:
avg_stability = sum(tot_stability) / float(len(tot_stability))
print(f"avg_Stability: {avg_stability}")
print(f"avg_APD: {avg_APD}, avg_smoothness: {avg_smoothness}, avg_proximity_error: {avg_proximity_error}, avg_consistency_value: {avg_consistency_value}")
print(tot_APD)
print(tot_smoothness)
print(tot_proximity_error)
print(tot_consistency_value)
print(f"avg_APD: {avg_APD}, avg_smoothness: {avg_smoothness}, avg_proximity_error: {avg_proximity_error}, avg_consistency_value: {avg_consistency_value}")
# /home/xueyi/sim/motion-diffusion-model/utils/test_utils_bundle_only_jts.py
# predicted_info_fn = "/home/xueyi/sim/motion-diffusion-model/save/my_humanml_trans_enc_512/predicted_infos_jts.npy"
# data = np.load(predicted_info_fn, allow_pickle=True).item()
# # targets = data['targets']
# outputs = data['outputs']
# obj_verts = data['obj_verts'][0]
# obj_faces = data['obj_faces']
# tot_base_pts = data["tot_base_pts"][0] # total base points # bsz x nnbasepts x 3 #
# gt_joints = data['tot_gt_rhand_joints'][0]
# # tot_rhand_joints = data["tot_rhand_joints"][0]
# print(f"gt_joints: {gt_joints.shape}")
# smoothness = calculate_joint_smoothness(outputs)
# APD = calculate_penetration_depth(outputs, obj_verts, obj_faces)
# dist_dist_avg = calculate_proximity_dist(outputs, gt_joints, obj_verts, obj_faces)
# print(f"smoothness: {smoothness}, average penetration depth: {APD}, minn_dist_dist: {dist_dist_avg}")
|