gene-hoi-denoising / common /object_tensors.py
meow
init
d6d3a5b
raw
history blame
10.2 kB
import json
import os.path as op
import sys
import numpy as np
import torch
import torch.nn as nn
import trimesh
from easydict import EasyDict
from scipy.spatial.distance import cdist
sys.path = [".."] + sys.path
import common.thing as thing
from common.rot import axis_angle_to_quaternion, quaternion_apply
from common.torch_utils import pad_tensor_list
from common.xdict import xdict
# objects to consider for training so far
OBJECTS = [
"capsulemachine",
"box",
"ketchup",
"laptop",
"microwave",
"mixer",
"notebook",
"espressomachine",
"waffleiron",
"scissors",
"phone",
]
class ObjectTensors(nn.Module):
def __init__(self):
super(ObjectTensors, self).__init__()
self.obj_tensors = thing.thing2dev(construct_obj_tensors(OBJECTS), "cpu")
self.dev = None
def forward_7d_batch(
self,
angles: (None, torch.Tensor),
global_orient: (None, torch.Tensor),
transl: (None, torch.Tensor),
query_names: list,
fwd_template: bool,
):
self._sanity_check(angles, global_orient, transl, query_names, fwd_template)
# store output
out = xdict()
# meta info
obj_idx = np.array(
[self.obj_tensors["names"].index(name) for name in query_names]
)
out["diameter"] = self.obj_tensors["diameter"][obj_idx]
out["f"] = self.obj_tensors["f"][obj_idx]
out["f_len"] = self.obj_tensors["f_len"][obj_idx]
out["v_len"] = self.obj_tensors["v_len"][obj_idx]
max_len = out["v_len"].max()
out["v"] = self.obj_tensors["v"][obj_idx][:, :max_len]
out["mask"] = self.obj_tensors["mask"][obj_idx][:, :max_len]
out["v_sub"] = self.obj_tensors["v_sub"][obj_idx]
out["parts_ids"] = self.obj_tensors["parts_ids"][obj_idx][:, :max_len]
out["parts_sub_ids"] = self.obj_tensors["parts_sub_ids"][obj_idx]
if fwd_template:
return out
# articulation + global rotation
quat_arti = axis_angle_to_quaternion(self.obj_tensors["z_axis"] * angles)
quat_global = axis_angle_to_quaternion(global_orient.view(-1, 3))
# mm
# collect entities to be transformed
tf_dict = xdict()
tf_dict["v_top"] = out["v"].clone()
tf_dict["v_sub_top"] = out["v_sub"].clone()
tf_dict["v_bottom"] = out["v"].clone()
tf_dict["v_sub_bottom"] = out["v_sub"].clone()
tf_dict["bbox_top"] = self.obj_tensors["bbox_top"][obj_idx]
tf_dict["bbox_bottom"] = self.obj_tensors["bbox_bottom"][obj_idx]
tf_dict["kp_top"] = self.obj_tensors["kp_top"][obj_idx]
tf_dict["kp_bottom"] = self.obj_tensors["kp_bottom"][obj_idx]
# articulate top parts
for key, val in tf_dict.items():
if "top" in key:
val_rot = quaternion_apply(quat_arti[:, None, :], val)
tf_dict.overwrite(key, val_rot)
# global rotation for all
for key, val in tf_dict.items():
val_rot = quaternion_apply(quat_global[:, None, :], val)
if transl is not None:
val_rot = val_rot + transl[:, None, :]
tf_dict.overwrite(key, val_rot)
# prep output
top_idx = out["parts_ids"] == 1
v_tensor = tf_dict["v_bottom"].clone()
v_tensor[top_idx, :] = tf_dict["v_top"][top_idx, :]
top_idx = out["parts_sub_ids"] == 1
v_sub_tensor = tf_dict["v_sub_bottom"].clone()
v_sub_tensor[top_idx, :] = tf_dict["v_sub_top"][top_idx, :]
bbox = torch.cat((tf_dict["bbox_top"], tf_dict["bbox_bottom"]), dim=1)
kp3d = torch.cat((tf_dict["kp_top"], tf_dict["kp_bottom"]), dim=1)
out.overwrite("v", v_tensor)
out.overwrite("v_sub", v_sub_tensor)
out.overwrite("bbox3d", bbox)
out.overwrite("kp3d", kp3d)
return out
def forward(self, angles, global_orient, transl, query_names):
out = self.forward_7d_batch(
angles, global_orient, transl, query_names, fwd_template=False
)
return out
def forward_template(self, query_names):
out = self.forward_7d_batch(
angles=None,
global_orient=None,
transl=None,
query_names=query_names,
fwd_template=True,
)
return out
def to(self, dev):
self.obj_tensors = thing.thing2dev(self.obj_tensors, dev)
self.dev = dev
def _sanity_check(self, angles, global_orient, transl, query_names, fwd_template):
# sanity check
if not fwd_template:
# assume transl is in meter
if transl is not None:
transl = transl * 1000 # mm
batch_size = angles.shape[0]
assert angles.shape == (batch_size, 1)
assert global_orient.shape == (batch_size, 3)
if transl is not None:
assert isinstance(transl, torch.Tensor)
assert transl.shape == (batch_size, 3)
assert len(query_names) == batch_size
def construct_obj(object_model_p):
# load vtemplate
mesh_p = op.join(object_model_p, "mesh.obj")
parts_p = op.join(object_model_p, f"parts.json")
json_p = op.join(object_model_p, "object_params.json")
obj_name = op.basename(object_model_p)
top_sub_p = f"./data/arctic_data/data/meta/object_vtemplates/{obj_name}/top_keypoints_300.json"
bottom_sub_p = top_sub_p.replace("top_", "bottom_")
with open(top_sub_p, "r") as f:
sub_top = np.array(json.load(f)["keypoints"])
with open(bottom_sub_p, "r") as f:
sub_bottom = np.array(json.load(f)["keypoints"])
sub_v = np.concatenate((sub_top, sub_bottom), axis=0)
with open(parts_p, "r") as f:
parts = np.array(json.load(f), dtype=np.bool)
assert op.exists(mesh_p), f"Not found: {mesh_p}"
mesh = trimesh.exchange.load.load_mesh(mesh_p, process=False)
mesh_v = mesh.vertices
mesh_f = torch.LongTensor(mesh.faces)
vidx = np.argmin(cdist(sub_v, mesh_v, metric="euclidean"), axis=1)
parts_sub = parts[vidx]
vsk = object_model_p.split("/")[-1]
with open(json_p, "r") as f:
params = json.load(f)
rest = EasyDict()
rest.top = np.array(params["mocap_top"])
rest.bottom = np.array(params["mocap_bottom"])
bbox_top = np.array(params["bbox_top"])
bbox_bottom = np.array(params["bbox_bottom"])
kp_top = np.array(params["keypoints_top"])
kp_bottom = np.array(params["keypoints_bottom"])
np.random.seed(1)
obj = EasyDict()
obj.name = vsk
obj.obj_name = "".join([i for i in vsk if not i.isdigit()])
obj.v = torch.FloatTensor(mesh_v)
obj.v_sub = torch.FloatTensor(sub_v)
obj.f = torch.LongTensor(mesh_f)
obj.parts = torch.LongTensor(parts)
obj.parts_sub = torch.LongTensor(parts_sub)
with open("./data/arctic_data/data/meta/object_meta.json", "r") as f:
object_meta = json.load(f)
obj.diameter = torch.FloatTensor(np.array(object_meta[obj.obj_name]["diameter"]))
obj.bbox_top = torch.FloatTensor(bbox_top)
obj.bbox_bottom = torch.FloatTensor(bbox_bottom)
obj.kp_top = torch.FloatTensor(kp_top)
obj.kp_bottom = torch.FloatTensor(kp_bottom)
obj.mocap_top = torch.FloatTensor(np.array(params["mocap_top"]))
obj.mocap_bottom = torch.FloatTensor(np.array(params["mocap_bottom"]))
return obj
def construct_obj_tensors(object_names):
obj_list = []
for k in object_names:
object_model_p = f"./data/arctic_data/data/meta/object_vtemplates/%s" % (k)
obj = construct_obj(object_model_p)
obj_list.append(obj)
bbox_top_list = []
bbox_bottom_list = []
mocap_top_list = []
mocap_bottom_list = []
kp_top_list = []
kp_bottom_list = []
v_list = []
v_sub_list = []
f_list = []
parts_list = []
parts_sub_list = []
diameter_list = []
for obj in obj_list:
v_list.append(obj.v)
v_sub_list.append(obj.v_sub)
f_list.append(obj.f)
# root_list.append(obj.root)
bbox_top_list.append(obj.bbox_top)
bbox_bottom_list.append(obj.bbox_bottom)
kp_top_list.append(obj.kp_top)
kp_bottom_list.append(obj.kp_bottom)
mocap_top_list.append(obj.mocap_top / 1000)
mocap_bottom_list.append(obj.mocap_bottom / 1000)
parts_list.append(obj.parts + 1)
parts_sub_list.append(obj.parts_sub + 1)
diameter_list.append(obj.diameter)
v_list, v_len_list = pad_tensor_list(v_list)
p_list, p_len_list = pad_tensor_list(parts_list)
ps_list = torch.stack(parts_sub_list, dim=0)
assert (p_len_list - v_len_list).sum() == 0
max_len = v_len_list.max()
mask = torch.zeros(len(obj_list), max_len)
for idx, vlen in enumerate(v_len_list):
mask[idx, :vlen] = 1.0
v_sub_list = torch.stack(v_sub_list, dim=0)
diameter_list = torch.stack(diameter_list, dim=0)
f_list, f_len_list = pad_tensor_list(f_list)
bbox_top_list = torch.stack(bbox_top_list, dim=0)
bbox_bottom_list = torch.stack(bbox_bottom_list, dim=0)
kp_top_list = torch.stack(kp_top_list, dim=0)
kp_bottom_list = torch.stack(kp_bottom_list, dim=0)
obj_tensors = {}
obj_tensors["names"] = object_names
obj_tensors["parts_ids"] = p_list
obj_tensors["parts_sub_ids"] = ps_list
obj_tensors["v"] = v_list.float() / 1000
obj_tensors["v_sub"] = v_sub_list.float() / 1000
obj_tensors["v_len"] = v_len_list
obj_tensors["f"] = f_list
obj_tensors["f_len"] = f_len_list
obj_tensors["diameter"] = diameter_list.float()
obj_tensors["mask"] = mask
obj_tensors["bbox_top"] = bbox_top_list.float() / 1000
obj_tensors["bbox_bottom"] = bbox_bottom_list.float() / 1000
obj_tensors["kp_top"] = kp_top_list.float() / 1000
obj_tensors["kp_bottom"] = kp_bottom_list.float() / 1000
obj_tensors["mocap_top"] = mocap_top_list
obj_tensors["mocap_bottom"] = mocap_bottom_list
obj_tensors["z_axis"] = torch.FloatTensor(np.array([0, 0, -1])).view(1, 3)
return obj_tensors