Spaces:
Runtime error
Runtime error
# This code is based on https://github.com/openai/guided-diffusion | |
""" | |
Train a diffusion model on images. | |
""" | |
### add gp | |
import os | |
import json | |
from utils.fixseed import fixseed | |
from utils.parser_util import train_args | |
from utils import dist_util | |
from train.training_loop import TrainLoop | |
from train.training_loop_ours import TrainLoop as TrainLoop_Ours ### trainer ours ### | |
from data_loaders.get_data import get_dataset_loader | |
from utils.model_util import create_model_and_diffusion | |
from train.train_platforms import ClearmlPlatform, TensorboardPlatform, NoPlatform # required for the eval operation | |
# python -m train.train_mdm --save_dir save/my_humanml_trans_enc_512 --dataset motion_ours | |
def main(): | |
args = train_args() | |
fixseed(args.seed) # fixseed # | |
# train_platform_type, | |
train_platform_type = eval(args.train_platform_type) | |
train_platform = train_platform_type(args.save_dir) | |
train_platform.report_args(args, name='Args') # train platform | |
if args.save_dir is None: # save dir was not specified # | |
raise FileNotFoundError('save_dir was not specified.') | |
# elif os.path.exists(args.save_dir) and not args.overwrite: | |
# raise FileExistsError('save_dir [{}] already exists.'.format(args.save_dir)) | |
# elif not os.path.exists(args.save_dir): | |
# os.makedirs(args.save_dir, exist_ok=True) | |
else: | |
os.makedirs(args.save_dir, exist_ok=True) | |
args_path = os.path.join(args.save_dir, 'args.json') | |
with open(args_path, 'w') as fw: | |
json.dump(vars(args), fw, indent=4, sort_keys=True) | |
## === setup dist === ## | |
dist_util.setup_dist(args.device) | |
## train mdm and dataest ## | |
print("creating data loader...") | |
# create data loaders # get dataset loader # | |
data = get_dataset_loader(name=args.dataset, batch_size=args.batch_size, num_frames=args.num_frames, args=args) | |
print("creating model and diffusion...") | |
model, diffusion = create_model_and_diffusion(args, data) | |
model.to(dist_util.dev()) ## model-to-the-target-device ## | |
model.rot2xyz.smpl_model.eval() | |
print('Total params: %.2fM' % (sum(p.numel() for p in model.parameters_wo_clip()) / 1000000.0)) | |
print("Training...") | |
if args.dataset in ["motion_ours"] and args.rep_type in ["obj_base_rel_dist", "ambient_obj_base_rel_dist", "obj_base_rel_dist_we", "obj_base_rel_dist_we_wj", "obj_base_rel_dist_we_wj_latents"]: | |
print(f"Start training loops for rep_type {args.rep_type}") | |
TrainLoop_Ours(args, train_platform, model, diffusion, data).run_loop() | |
else: | |
TrainLoop(args, train_platform, model, diffusion, data).run_loop() | |
train_platform.close() | |
if __name__ == "__main__": | |
main() | |