gene-hoi-denoising / train /training_loop_ours.py
meow
init
d6d3a5b
raw
history blame
30.9 kB
import copy
import functools
import os
import time
from types import SimpleNamespace
import numpy as np
import blobfile as bf
import torch
from torch.optim import AdamW
from diffusion import logger
from utils import dist_util
from diffusion.fp16_util import MixedPrecisionTrainer
from diffusion.resample import LossAwareSampler, UniformSampler
from tqdm import tqdm
from diffusion.resample import create_named_schedule_sampler
# from data_loaders.humanml.networks.evaluator_wrapper import EvaluatorMDMWrapper
# from eval import eval_humanml, eval_humanact12_uestc
# from data_loaders.get_data import get_dataset_loader
# For ImageNet experiments, this was a good default value.
# We found that the lg_loss_scale quickly climbed to
# 20-21 within the first ~1K steps of training.
## intial log loss scale ##
INITIAL_LOG_LOSS_SCALE = 20.0
# do not #
class TrainLoop:
def __init__(self, args, train_platform, model, diffusion, data):
self.args = args
self.dataset = args.dataset
self.train_platform = train_platform
self.model = model
self.diffusion = diffusion
if self.args.nprocs > 1:
self.cond_mode = model.module.cond_mode
else:
self.cond_mode = model.cond_mode
self.data = data
self.batch_size = args.batch_size
self.microbatch = args.batch_size # deprecating this option
self.lr = args.lr
self.log_interval = args.log_interval
self.save_interval = args.save_interval
self.resume_checkpoint = args.resume_checkpoint
self.use_fp16 = False # deprecating this option
self.fp16_scale_growth = 1e-3 # deprecating this option
self.weight_decay = args.weight_decay
self.lr_anneal_steps = args.lr_anneal_steps
self.step = 0
# self.resume_step = 0
self.resume_step = False
self.global_batch = self.batch_size # * dist.get_world_size()
self.num_steps = args.num_steps
self.num_epochs = self.num_steps // len(self.data) + 1
self.sync_cuda = torch.cuda.is_available()
if self.args.finetune_with_cond: # finetune_with_cond ->
self._load_and_sync_parameters_cond() # load parameters here
print(f"Setting trans linear layer to zero for conditioning...")
self.model.set_trans_linear_layer_to_zero() #
else: # finetune_with_cond
self._load_and_sync_parameters()
self.mp_trainer = MixedPrecisionTrainer( # mixed
model=self.model, #
use_fp16=self.use_fp16,
fp16_scale_growth=self.fp16_scale_growth,
args=args,
)
self.save_dir = args.save_dir
self.overwrite = args.overwrite
self.opt = AdamW(
self.mp_trainer.master_params, lr=self.lr, weight_decay=self.weight_decay
)
if self.resume_step and not args.not_load_opt:
self._load_optimizer_state()
# Model was resumed, either due to a restart or a checkpoint
# being specified at the command line.
print(f"dist_utils: {dist_util.dev()}")
self.device = torch.device("cpu")
if torch.cuda.is_available() and dist_util.dev() != 'cpu':
self.device = torch.device(dist_util.dev())
self.schedule_sampler_type = 'uniform'
self.schedule_sampler = create_named_schedule_sampler(self.schedule_sampler_type, diffusion)
self.eval_wrapper, self.eval_data, self.eval_gt_data = None, None, None
# if args.dataset in ['kit', 'humanml', 'motion_ours'] and args.eval_during_training:
# mm_num_samples = 0 # mm is super slow hence we won't run it during training
# mm_num_repeats = 0 # mm is super slow hence we won't run it during training
# gen_loader = get_dataset_loader(name=args.dataset, batch_size=args.eval_batch_size, num_frames=None,
# split=args.eval_split,
# hml_mode='eval')
# self.eval_gt_data = get_dataset_loader(name=args.dataset, batch_size=args.eval_batch_size, num_frames=None,
# split=args.eval_split,
# hml_mode='gt')
# self.eval_wrapper = EvaluatorMDMWrapper(args.dataset, dist_util.dev())
# self.eval_data = {
# 'test': lambda: eval_humanml.get_mdm_loader(
# model, diffusion, args.eval_batch_size,
# gen_loader, mm_num_samples, mm_num_repeats, gen_loader.dataset.opt.max_motion_length,
# args.eval_num_samples, scale=1.,
# )
# }
self.use_ddp = False if self.args.nprocs == 1 else True
self.ddp_model = self.model
def safe_load_ckpt(self, model, state_dicts):
ori_dict = state_dicts
part_dict = dict()
model_dict = model.state_dict()
tot_params_n = 0
for k in ori_dict:
if self.args.resume_diff:
if k in model_dict:
v = ori_dict[k]
part_dict[k] = v
tot_params_n += 1
else:
if k in model_dict and "denoising" not in k:
v = ori_dict[k]
part_dict[k] = v
tot_params_n += 1
model_dict.update(part_dict)
model.load_state_dict(model_dict)
print(f"Resume glb-backbone finished!! Total number of parameters: {tot_params_n}.")
#
def _load_and_sync_parameters_cond(self):
resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
if resume_checkpoint:
self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
logger.log(f"loading model from checkpoint: {resume_checkpoint}...")
state_dicts = dist_util.load_state_dict(
resume_checkpoint, map_location=dist_util.dev()
)
if self.args.diff_basejtsrel:
# if self.args.finetune_with_cond_rel:
model_dict = self.model.state_dict()
# elif self.args.finetune_with_cond_jtsobj:
model_dict.update(state_dicts)
self.model.load_state_dict(model_dict)
if self.args.finetune_with_cond_jtsobj: # finetune_with_cond_jtsobj --> finetune_with_cond_jtsobj
# cond_joints_offset_input_process <- joints_offset_input_process; cond_sequence_pos_encoder <- sequence_pos_encoder; cond_seqTransEncoder <- seqTransEncoder
self.model.cond_joints_offset_input_process.load_state_dict(self.model.joints_offset_input_process.state_dict())
self.model.cond_sequence_pos_encoder.load_state_dict(self.model.sequence_pos_encoder.state_dict())
self.model.cond_seqTransEncoder.load_state_dict(self.model.seqTransEncoder.state_dict())
else:
raise ValueError(f"Must have diff_basejtsrel setting, others not implemented yet!")
# self.safe_load_ckpt(self.model,
# dist_util.load_state_dict(
# resume_checkpoint, map_location=dist_util.dev()
# )
# )
def _load_and_sync_parameters(self):
resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
if resume_checkpoint:
self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
logger.log(f"loading model from checkpoint: {resume_checkpoint}...")
# self.model.load_state_dict(
# dist_util.load_state_dict(
# resume_checkpoint, map_location=dist_util.dev()
# )
# )
self.safe_load_ckpt(self.model,
dist_util.load_state_dict(
resume_checkpoint, map_location=dist_util.dev()
)
)
def _load_optimizer_state(self):
main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
opt_checkpoint = bf.join(
bf.dirname(main_checkpoint), f"opt{self.resume_step:09}.pt"
)
if bf.exists(opt_checkpoint):
logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}")
state_dict = dist_util.load_state_dict(
opt_checkpoint, map_location=dist_util.dev()
)
self.opt.load_state_dict(state_dict)
def run_loop(self):
for epoch in range(self.num_epochs):
print(f'Starting epoch {epoch}')
for batch in tqdm(self.data):
# for motion, cond in tqdm(self.data): ## motion; cond; data ##
if not (not self.lr_anneal_steps or self.step + self.resume_step < self.lr_anneal_steps):
break
# print(f"motion: {motion.size()}, ") ## motion.to(self.device)
# motion = motion.to(self.device)
# cond['y'] = {key: val.to(self.device) if torch.is_tensor(val) else val for key, val in cond['y'].items()}
# batch = {
# key: val.to(self.device) if torch.is_tensor(val) else ([subval.to(self.device) for subval in val] if isinstance(val, list) else val) for key, val in batch.items()
# }
for k in batch:
if isinstance(batch[k], torch.Tensor):
batch[k] = batch[k].to(self.device)
elif isinstance(batch[k], list):
batch[k] = [subval.to(self.device) if isinstance(subval, torch.Tensor) else subval for subval in batch[k]]
else:
batch[k] = batch[k]
## run current motion and cond ##
## run step ##
self.run_step(batch) ## run step for the motion and cond ##
## ===== log useful things ==== ##
if self.step % self.log_interval == 0: #
loss_dict = logger.get_current().name2val
print('step[{}]: loss[{:0.5f}]'.format(self.step+self.resume_step, loss_dict["loss"]))
for k in loss_dict:
v = loss_dict[k]
if k in ['rel_pred_loss', 'dist_pred_loss', 'dec_e_along_normals_loss', 'dec_e_vt_normals_loss', 'joints_pred_loss', 'jts_pred_loss', 'jts_latent_denoising_loss', 'basejtsrel_pred_loss', 'basejtsrel_latent_denoising_loss', 'basejtse_along_normals_pred_loss', 'basejtse_vt_normals_pred_loss', 'basejtse_latent_denoising_loss', "KL_loss", "avg_joints_pred_loss", "basejtrel_denoising_loss", "avgjts_denoising_loss"]: ## avg_joints_pred_loss # avg joints pred loss #
print(f"\t{k}: {loss_dict[k].mean().item() if isinstance(loss_dict[k], torch.Tensor) else loss_dict[k]}")
if k in ['step', 'samples'] or '_q' in k: # step samples #
continue
else:
self.train_platform.report_scalar(name=k, value=v, iteration=self.step, group_name='Loss')
# for k,v in logger.get_current().name2val.items():
# if k == 'loss':
# print('step[{}]: loss[{:0.5f}]'.format(self.step+self.resume_step, v))
# if k in ['step', 'samples'] or '_q' in k: # step samples #
# continue
# else:
# self.train_platform.report_scalar(name=k, value=v, iteration=self.step, group_name='Loss')
## ===== save checkpoints ===== ##
if self.step % self.save_interval == 0:
## save; model.eval;
self.save()
if self.args.nprocs > 1:
self.model.module.eval()
else:
self.model.eval()
self.evaluate()
if self.args.nprocs > 1:
self.model.module.train()
else:
self.model.train()
# Run for a finite amount of time in integration tests.
if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0:
return
self.step += 1
if not (not self.lr_anneal_steps or self.step + self.resume_step < self.lr_anneal_steps):
break
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()
self.evaluate()
def evaluate(self):
if not self.args.eval_during_training:
return
start_eval = time.time()
if self.eval_wrapper is not None:
print('Running evaluation loop: [Should take about 90 min]')
log_file = os.path.join(self.save_dir, f'eval_humanml_{(self.step + self.resume_step):09d}.log')
diversity_times = 300
mm_num_times = 0 # mm is super slow hence we won't run it during training
eval_dict = eval_humanml.evaluation(
self.eval_wrapper, self.eval_gt_data, self.eval_data, log_file,
replication_times=self.args.eval_rep_times, diversity_times=diversity_times, mm_num_times=mm_num_times, run_mm=False)
print(eval_dict)
for k, v in eval_dict.items():
if k.startswith('R_precision'):
for i in range(len(v)):
self.train_platform.report_scalar(name=f'top{i + 1}_' + k, value=v[i],
iteration=self.step + self.resume_step,
group_name='Eval')
else:
self.train_platform.report_scalar(name=k, value=v, iteration=self.step + self.resume_step,
group_name='Eval')
elif self.dataset in ['humanact12', 'uestc']:
eval_args = SimpleNamespace(num_seeds=self.args.eval_rep_times, num_samples=self.args.eval_num_samples,
batch_size=self.args.eval_batch_size, device=self.device, guidance_param = 1,
dataset=self.dataset, unconstrained=self.args.unconstrained,
model_path=os.path.join(self.save_dir, self.ckpt_file_name()))
eval_dict = eval_humanact12_uestc.evaluate(eval_args, model=self.model, diffusion=self.diffusion, data=self.data.dataset)
print(f'Evaluation results on {self.dataset}: {sorted(eval_dict["feats"].items())}')
for k, v in eval_dict["feats"].items():
if 'unconstrained' not in k:
self.train_platform.report_scalar(name=k, value=np.array(v).astype(float).mean(), iteration=self.step, group_name='Eval')
else:
self.train_platform.report_scalar(name=k, value=np.array(v).astype(float).mean(), iteration=self.step, group_name='Eval Unconstrained')
end_eval = time.time()
print(f'Evaluation time: {round(end_eval-start_eval)/60}min')
def run_step(self, batch):
self.forward_backward(batch) ## forward
self.mp_trainer.optimize(self.opt)
self._anneal_lr()
self.log_step()
def forward_backward(self, batch):
self.mp_trainer.zero_grad()
for i in range(0, batch['base_pts'].shape[0], self.microbatch):
# print(f"batch_device: {batch['base_pts'].device}") ## base pts device
# Eliminates the microbatch feature
assert i == 0
assert self.microbatch == self.batch_size
micro = batch
# micro_cond = cond
## micro-batch # base_pts; base_pts #
last_batch = (i + self.microbatch) >= batch['base_pts'].shape[0]
t, weights = self.schedule_sampler.sample(micro['base_pts'].shape[0], dist_util.dev())
# print(f"t: {t.size()}, weights: {weights.size()}, t_device: {t.device}, weights_device: {weights.device}")
# compute_losses = functools.partial(
# self.diffusion.training_losses,
# self.ddp_model,
# micro, # [bs, ch, image_size, image_size]
# t, # [bs](int) sampled timesteps
# model_kwargs={'y': batch}, #
# dataset=self.data.dataset
# )
# # if last_batch or not self.use_ddp:
# # losses = compute_losses() ## compute lossses
# # else:
# # with self.ddp_model.no_sync():
# # losses = compute_losses()
# if not self.use_ddp:
# losses = compute_losses() ## compute lossses
# else:
# with self.ddp_model.no_sync():
# losses = compute_losses()
### training losses ###
losses = self.diffusion.training_losses(
self.ddp_model,
micro, # [bs, ch, image_size, image_size]
t, # [bs](int) sampled timesteps
model_kwargs={'y': batch},
dataset=self.data.dataset
)
# loss aware sampler #
if isinstance(self.schedule_sampler, LossAwareSampler):
self.schedule_sampler.update_with_local_losses(
t, losses["loss"].detach()
)
# print(losses["loss"].size(), f"weights: {weights.size()}")
loss = (losses["loss"] * weights).mean()
if self.args.nprocs > 1:
torch.distributed.barrier()
dist_util.reduce_mean(loss, self.args.nprocs) ## args nprocs ##
log_loss_dict(
self.diffusion, t, {k: v * weights for k, v in losses.items()}
)
self.mp_trainer.backward(loss)
def predict_single_step(self, batch, use_t=None):
# self.mp_trainer.zero_grad()
# use_t is not Noen
tot_samples = []
tot_targets = []
tot_dec_disp_e_along_normals = []
tot_dec_disp_e_vt_normals = []
tot_pred_joints_quant = []
#
for i in range(0, batch['base_pts'].shape[0], self.microbatch):
# Eliminates the microbatch feature
assert i == 0
assert self.microbatch == self.batch_size
micro = batch
# ## micro batch ##
rhand_joints = micro['rhand_joints']
# micro_cond = cond # micro_cond and cond ##
## micro-batch ##
last_batch = (i + self.microbatch) >= batch['base_pts'].shape[0]
t, weights = self.schedule_sampler.sample(micro['base_pts'].shape[0], dist_util.dev())
if use_t is not None:
t = torch.zeros_like(t) + use_t
# batch: bsz x nnjoints x 3 x nnframes #
## === original sampling === ##
# terms, model_output, target, t = self.diffusion.predict_sample_single_step(self.ddp_model, micro, t, model_kwargs=micro_cond, noise=None, dataset=self.data.dataset) ## restricted by those things ##
### use p_sample_loop from the diffusion model ###
sample_fn = self.diffusion.p_sample_loop
samples = sample_fn(
self.ddp_model,
rhand_joints.shape,
clip_denoised=False,
model_kwargs=micro,
skip_timesteps=0,
init_image=micro,
progress=True,
dump_steps=None,
noise=None, ## noise ## #
# const_noise=False, # whether to cond on noise ##
const_noise=self.args.const_noise, ## const noise !
st_timestep=use_t,
)
# sample either as joints or as relative positions for each base pts #
tot_samples.append(samples['sampled_rhand_joints'])
# tot_samples = tot_samples + samples # samples rhand_joints; targets rhand_joints
### add rhand joints
tot_targets.append(micro['rhand_joints'])
if 'e_disp_rel_to_base_along_normals' in samples:
tot_dec_disp_e_along_normals.append(samples['e_disp_rel_to_base_along_normals'])
tot_dec_disp_e_vt_normals.append(samples['e_disp_rel_to_baes_vt_normals'])
if 'pred_joint_quants' in samples:
tot_pred_joints_quant.append(samples['pred_joint_quants'])
# tot_targets.append(samples['rhand_joints'])
# all of them target at joints samples ##
model_output = torch.cat(tot_samples, dim=0)
# model_output = tot_samples
target = torch.cat(tot_targets, dim=0)
if len(tot_dec_disp_e_along_normals) > 0:
tot_dec_disp_e_along_normals = torch.cat(tot_dec_disp_e_along_normals, dim=0)
tot_dec_disp_e_vt_normals = torch.cat(tot_dec_disp_e_vt_normals, dim=0) ### tot_dec_disp_e_vt_normals #
if len(tot_pred_joints_quant) > 0:
tot_pred_joints_quant = torch.cat(tot_pred_joints_quant, dim=0)
# print(f"Returning with model_output; {model_output.size()}, target: {target.size()}")
print(f"Returning with target: {target.size()}")
### returning the samples and tarets ###
if isinstance(tot_pred_joints_quant, torch.Tensor):
return model_output, target, tot_pred_joints_quant
elif isinstance(tot_dec_disp_e_along_normals, torch.Tensor):
return model_output, target, tot_dec_disp_e_along_normals, tot_dec_disp_e_vt_normals
else:
return model_output, target
# return model_output, target
### predict from data ###
def predict_from_data(self):
# for epoch in range(self.num_epochs): #
# print(f'Starting epoch {epoch}') # the
## ==== a single pass for a single sequence ==== ##
tot_model_outputs = []
tot_targets = []
tot_st_idxes = []
tot_ed_idxes = []
tot_pert_verts = []
tot_verts = []
tot_dec_disp_e_along_normals = []
tot_dec_disp_e_vt_normals = []
## motion; cond; data ##
tot_pred_joints_quant = []
for batch in tqdm(self.data): # batch data #
for k in batch:
if isinstance(batch[k], torch.Tensor):
batch[k] = batch[k].to(self.device)
elif isinstance(batch[k], list):
# batch[k] = [subval.to(self.device) for subval in batch[k]]
batch[k] = [subval.to(self.device) if isinstance(subval, torch.Tensor) else subval for subval in batch[k]]
else:
batch[k] = batch[k]
# motion = motion.to(self.device)
# cond['y'] = {key: val.to(self.device) if torch.is_tensor(val) else val for key, val in cond['y'].items()}
# st_idxes = cond['y']['st_idx'] # st_idxes
# ed_idxes = cond['y']['ed_idx'] # ed_idxes
# pert_verts = cond['y']['pert_verts']
# verts = cond['y']['verts']
# if 'avg_joints' in cond['y']:
# avg_joints = cond['y']['avg_joints']
# std_joints = cond['y']['std_joints']
# else:
# avg_joints = None
# std_joints = None
st_idxes = batch['st_idx']
ed_idxes = batch['ed_idx']
pert_verts = batch['pert_verts']
verts = batch['verts']
# tot pert verts
tot_pert_verts.append(pert_verts)
tot_verts.append(verts)
## generative denoising -> we want to use it for the denoising task ##
# std_joints: bsz x 1
# avg_joints: bsz x 1 x 3 --> mean of joints for each batch
## predict_single_step ##
# model_output, target = self.predict_single_step(batch, use_t=1) ### trainingjloop ours
use_t = self.args.use_t
tot_pred_outputs = self.predict_single_step(batch, use_t=use_t)
#### diff baes jts e ##
if len(tot_pred_outputs) == 3:
model_output, target, pred_joints_quant = tot_pred_outputs
tot_pred_joints_quant.append(pred_joints_quant)
elif self.args.diff_basejtse:
model_output, target, dec_disp_e_along_normals, dec_disp_e_vt_normals = tot_pred_outputs
else:
model_output, target = tot_pred_outputs[:2]
# model output; target #
## model_output: ([6, 21, 3, 60]), target: torch.Size([6, 21, 3, 60])
# if avg_joints is not None:
# ### model_output, target ###
# model_output = (model_output * std_joints.unsqueeze(-1).unsqueeze(-1)) + avg_joints.unsqueeze(-1)
# target = (target * std_joints.unsqueeze(-1).unsqueeze(-1)) + avg_joints.unsqueeze(-1)
# 10 -> the output sequence is still a little bit noisy #
# 100 -> 60
# the difficulty of predicting base pts rel position information #
# the difficulty of the prediction problem # base pts rel information p
## predicting base pts relative positions to the base_pts predictions ## ### base pts predictions ## wu le ##
if self.args.diff_basejtse:
tot_dec_disp_e_along_normals.append(dec_disp_e_along_normals)
tot_dec_disp_e_vt_normals.append(dec_disp_e_vt_normals)
tot_st_idxes.append(st_idxes)
tot_ed_idxes.append(ed_idxes)
tot_targets.append(target)
tot_model_outputs.append(model_output)
# tot_model_outputs.extend(model_output)
# tot_model_outputs = tot_model_outputs + model_output
tot_st_idxes = torch.cat(tot_st_idxes, dim=0)
tot_ed_idxes = torch.cat(tot_ed_idxes, dim=0)
tot_targets = torch.cat(tot_targets, dim=0)
tot_model_outputs = torch.cat(tot_model_outputs, dim=0)
if self.args.diff_basejtse:
tot_dec_disp_e_along_normals = torch.cat(tot_dec_disp_e_along_normals, dim=0)
tot_dec_disp_e_vt_normals = torch.cat(tot_dec_disp_e_vt_normals, dim=0)
if len(tot_pred_joints_quant) > 0:
tot_pred_joints_quant = torch.cat(tot_pred_joints_quant, dim=0)
tot_pert_verts = torch.cat(tot_pert_verts, dim=0)
tot_verts = torch.cat(tot_verts, dim=0)
if isinstance(tot_pred_joints_quant, torch.Tensor):
return tot_targets, tot_model_outputs, tot_st_idxes, tot_ed_idxes, tot_pert_verts, tot_verts, tot_pred_joints_quant
elif self.args.diff_basejtse:
return tot_targets, tot_model_outputs, tot_st_idxes, tot_ed_idxes, tot_pert_verts, tot_verts, tot_dec_disp_e_along_normals, tot_dec_disp_e_vt_normals
else:
return tot_targets, tot_model_outputs, tot_st_idxes, tot_ed_idxes, tot_pert_verts, tot_verts
def _anneal_lr(self):
if not self.lr_anneal_steps:
return
frac_done = (self.step + self.resume_step) / self.lr_anneal_steps
lr = self.lr * (1 - frac_done)
for param_group in self.opt.param_groups:
param_group["lr"] = lr
def log_step(self):
logger.logkv("step", self.step + self.resume_step)
logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch)
def ckpt_file_name(self):
return f"model{(self.step+self.resume_step):09d}.pt"
def save(self):
def save_checkpoint(params):
if self.args.finetune_with_cond: #
state_dict = self.mp_trainer.model.state_dict()
else:
state_dict = self.mp_trainer.master_params_to_state_dict(params)
# Do not save CLIP weights
clip_weights = [e for e in state_dict.keys() if e.startswith('clip_model.')]
for e in clip_weights:
del state_dict[e]
# logger.log(f"saving model...")
filename = self.ckpt_file_name()
model_sv_fn = os.path.join(self.save_dir, filename)
logger.log(f"saving model to {model_sv_fn}...")
with bf.BlobFile(bf.join(self.save_dir, filename), "wb") as f:
torch.save(state_dict, f)
save_checkpoint(self.mp_trainer.master_params)
with bf.BlobFile(
bf.join(self.save_dir, f"opt{(self.step+self.resume_step):09d}.pt"),
"wb",
) as f:
torch.save(self.opt.state_dict(), f)
def parse_resume_step_from_filename(filename):
"""
Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the
checkpoint's number of steps.
"""
split = filename.split("model")
if len(split) < 2:
return 0
split1 = split[-1].split(".")[0]
try:
return int(split1)
except ValueError:
return 0
def get_blob_logdir():
# You can change this to be a separate path to save checkpoints to
# a blobstore or some external drive.
return logger.get_dir()
def find_resume_checkpoint():
# On your infrastructure, you may want to override this to automatically
# discover the latest checkpoint on your blob storage, etc.
return None
def log_loss_dict(diffusion, ts, losses):
for key, values in losses.items():
logger.logkv_mean(key, values.mean().item())
# Log the quantiles (four quartiles, in particular).
for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()):
quartile = int(4 * sub_t / diffusion.num_timesteps)
logger.logkv_mean(f"{key}_q{quartile}", sub_loss)