meow
init
d6d3a5b
raw
history blame contribute delete
No virus
6.05 kB
# This code is based on https://github.com/openai/guided-diffusion
"""
Various utilities for neural networks.
"""
import math
import torch as th
import torch.nn as nn
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
class SiLU(nn.Module):
def forward(self, x):
return x * th.sigmoid(x)
class GroupNorm32(nn.GroupNorm):
def forward(self, x):
return super().forward(x.float()).type(x.dtype)
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def linear(*args, **kwargs):
"""
Create a linear module.
"""
return nn.Linear(*args, **kwargs)
def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def update_ema(target_params, source_params, rate=0.99):
"""
Update target parameters to be closer to those of source parameters using
an exponential moving average.
:param target_params: the target parameter sequence.
:param source_params: the source parameter sequence.
:param rate: the EMA rate (closer to 1 means slower).
"""
for targ, src in zip(target_params, source_params):
targ.detach().mul_(rate).add_(src, alpha=1 - rate)
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def scale_module(module, scale):
"""
Scale the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().mul_(scale)
return module
def mean_flat(tensor):
"""
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
def sum_flat(tensor):
"""
Take the sum over all non-batch dimensions.
"""
return tensor.sum(dim=list(range(1, len(tensor.shape))))
def normalization(channels):
"""
Make a standard normalization layer.
:param channels: number of input channels.
:return: an nn.Module for normalization.
"""
return GroupNorm32(32, channels)
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = th.exp(
-math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
if dim % 2:
embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def checkpoint(func, inputs, params, flag):
"""
Evaluate a function without caching intermediate activations, allowing for
reduced memory at the expense of extra compute in the backward pass.
:param func: the function to evaluate.
:param inputs: the argument sequence to pass to `func`.
:param params: a sequence of parameters `func` depends on but does not
explicitly take as arguments.
:param flag: if False, disable gradient checkpointing.
"""
if flag:
args = tuple(inputs) + tuple(params)
return CheckpointFunction.apply(func, len(inputs), *args)
else:
return func(*inputs)
class CheckpointFunction(th.autograd.Function):
@staticmethod
@th.cuda.amp.custom_fwd
def forward(ctx, run_function, length, *args):
ctx.run_function = run_function
ctx.input_length = length
ctx.save_for_backward(*args)
with th.no_grad():
output_tensors = ctx.run_function(*args[:length])
return output_tensors
@staticmethod
@th.cuda.amp.custom_bwd
def backward(ctx, *output_grads):
args = list(ctx.saved_tensors)
# Filter for inputs that require grad. If none, exit early.
input_indices = [i for (i, x) in enumerate(args) if x.requires_grad]
if not input_indices:
return (None, None) + tuple(None for _ in args)
with th.enable_grad():
for i in input_indices:
if i < ctx.input_length:
# Not sure why the OAI code does this little
# dance. It might not be necessary.
args[i] = args[i].detach().requires_grad_()
args[i] = args[i].view_as(args[i])
output_tensors = ctx.run_function(*args[:ctx.input_length])
if isinstance(output_tensors, th.Tensor):
output_tensors = [output_tensors]
# Filter for outputs that require grad. If none, exit early.
out_and_grads = [(o, g) for (o, g) in zip(output_tensors, output_grads) if o.requires_grad]
if not out_and_grads:
return (None, None) + tuple(None for _ in args)
# Compute gradients on the filtered tensors.
computed_grads = th.autograd.grad(
[o for (o, g) in out_and_grads],
[args[i] for i in input_indices],
[g for (o, g) in out_and_grads]
)
# Reassemble the complete gradient tuple.
input_grads = [None for _ in args]
for (i, g) in zip(input_indices, computed_grads):
input_grads[i] = g
return (None, None) + tuple(input_grads)