gene-hoi-denoising / train /training_loop.py
meow
init
d6d3a5b
import copy
import functools
import os
import time
from types import SimpleNamespace
import numpy as np
import blobfile as bf
import torch
from torch.optim import AdamW
from diffusion import logger
from utils import dist_util
from diffusion.fp16_util import MixedPrecisionTrainer
from diffusion.resample import LossAwareSampler, UniformSampler
from tqdm import tqdm
from diffusion.resample import create_named_schedule_sampler
from data_loaders.humanml.networks.evaluator_wrapper import EvaluatorMDMWrapper
from eval import eval_humanml, eval_humanact12_uestc
from data_loaders.get_data import get_dataset_loader
# For ImageNet experiments, this was a good default value.
# We found that the lg_loss_scale quickly climbed to
# 20-21 within the first ~1K steps of training.
## intial log loss scale ##
INITIAL_LOG_LOSS_SCALE = 20.0
# do not #
class TrainLoop:
def __init__(self, args, train_platform, model, diffusion, data):
self.args = args
self.dataset = args.dataset
self.train_platform = train_platform
self.model = model
self.diffusion = diffusion
self.cond_mode = model.cond_mode
self.data = data
self.batch_size = args.batch_size
self.microbatch = args.batch_size # deprecating this option
self.lr = args.lr
self.log_interval = args.log_interval
self.save_interval = args.save_interval
self.resume_checkpoint = args.resume_checkpoint
self.use_fp16 = False # deprecating this option
self.fp16_scale_growth = 1e-3 # deprecating this option
self.weight_decay = args.weight_decay
self.lr_anneal_steps = args.lr_anneal_steps
self.step = 0
self.resume_step = 0
self.global_batch = self.batch_size # * dist.get_world_size()
self.num_steps = args.num_steps
self.num_epochs = self.num_steps // len(self.data) + 1
self.sync_cuda = torch.cuda.is_available()
self._load_and_sync_parameters()
self.mp_trainer = MixedPrecisionTrainer(
model=self.model, #
use_fp16=self.use_fp16,
fp16_scale_growth=self.fp16_scale_growth,
)
self.save_dir = args.save_dir
self.overwrite = args.overwrite
self.opt = AdamW(
self.mp_trainer.master_params, lr=self.lr, weight_decay=self.weight_decay
)
if self.resume_step:
self._load_optimizer_state()
# Model was resumed, either due to a restart or a checkpoint
# being specified at the command line.
self.device = torch.device("cpu")
if torch.cuda.is_available() and dist_util.dev() != 'cpu':
self.device = torch.device(dist_util.dev())
self.schedule_sampler_type = 'uniform'
self.schedule_sampler = create_named_schedule_sampler(self.schedule_sampler_type, diffusion)
self.eval_wrapper, self.eval_data, self.eval_gt_data = None, None, None
if args.dataset in ['kit', 'humanml', 'motion_ours'] and args.eval_during_training:
mm_num_samples = 0 # mm is super slow hence we won't run it during training
mm_num_repeats = 0 # mm is super slow hence we won't run it during training
gen_loader = get_dataset_loader(name=args.dataset, batch_size=args.eval_batch_size, num_frames=None,
split=args.eval_split,
hml_mode='eval')
self.eval_gt_data = get_dataset_loader(name=args.dataset, batch_size=args.eval_batch_size, num_frames=None,
split=args.eval_split,
hml_mode='gt')
self.eval_wrapper = EvaluatorMDMWrapper(args.dataset, dist_util.dev())
self.eval_data = {
'test': lambda: eval_humanml.get_mdm_loader(
model, diffusion, args.eval_batch_size,
gen_loader, mm_num_samples, mm_num_repeats, gen_loader.dataset.opt.max_motion_length,
args.eval_num_samples, scale=1.,
)
}
self.use_ddp = False
self.ddp_model = self.model
def _load_and_sync_parameters(self):
resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
if resume_checkpoint:
self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
logger.log(f"loading model from checkpoint: {resume_checkpoint}...")
self.model.load_state_dict(
dist_util.load_state_dict(
resume_checkpoint, map_location=dist_util.dev()
)
)
def _load_optimizer_state(self):
main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
opt_checkpoint = bf.join(
bf.dirname(main_checkpoint), f"opt{self.resume_step:09}.pt"
)
if bf.exists(opt_checkpoint):
logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}")
state_dict = dist_util.load_state_dict(
opt_checkpoint, map_location=dist_util.dev()
)
self.opt.load_state_dict(state_dict)
def run_loop(self):
for epoch in range(self.num_epochs):
print(f'Starting epoch {epoch}')
for motion, cond in tqdm(self.data): ## motion; cond; data ##
if not (not self.lr_anneal_steps or self.step + self.resume_step < self.lr_anneal_steps):
break
# print(f"motion: {motion.size()}, ") ## motion.to(self.device)
motion = motion.to(self.device)
cond['y'] = {key: val.to(self.device) if torch.is_tensor(val) else val for key, val in cond['y'].items()}
## run current motion and cond ##
## run step ##s
self.run_step(motion, cond) ## run step for the motion and cond ##
if self.step % self.log_interval == 0:
for k,v in logger.get_current().name2val.items():
if k == 'loss':
print('step[{}]: loss[{:0.5f}]'.format(self.step+self.resume_step, v))
if k in ['step', 'samples'] or '_q' in k:
continue
else:
self.train_platform.report_scalar(name=k, value=v, iteration=self.step, group_name='Loss')
if self.step % self.save_interval == 0:
## save; model.eval;
self.save()
self.model.eval()
self.evaluate()
self.model.train()
# Run for a finite amount of time in integration tests.
if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0:
return
self.step += 1
if not (not self.lr_anneal_steps or self.step + self.resume_step < self.lr_anneal_steps):
break
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()
self.evaluate()
def evaluate(self):
if not self.args.eval_during_training:
return
start_eval = time.time()
if self.eval_wrapper is not None:
print('Running evaluation loop: [Should take about 90 min]')
log_file = os.path.join(self.save_dir, f'eval_humanml_{(self.step + self.resume_step):09d}.log')
diversity_times = 300
mm_num_times = 0 # mm is super slow hence we won't run it during training
eval_dict = eval_humanml.evaluation(
self.eval_wrapper, self.eval_gt_data, self.eval_data, log_file,
replication_times=self.args.eval_rep_times, diversity_times=diversity_times, mm_num_times=mm_num_times, run_mm=False)
print(eval_dict)
for k, v in eval_dict.items():
if k.startswith('R_precision'):
for i in range(len(v)):
self.train_platform.report_scalar(name=f'top{i + 1}_' + k, value=v[i],
iteration=self.step + self.resume_step,
group_name='Eval')
else:
self.train_platform.report_scalar(name=k, value=v, iteration=self.step + self.resume_step,
group_name='Eval')
elif self.dataset in ['humanact12', 'uestc']:
eval_args = SimpleNamespace(num_seeds=self.args.eval_rep_times, num_samples=self.args.eval_num_samples,
batch_size=self.args.eval_batch_size, device=self.device, guidance_param = 1,
dataset=self.dataset, unconstrained=self.args.unconstrained,
model_path=os.path.join(self.save_dir, self.ckpt_file_name()))
eval_dict = eval_humanact12_uestc.evaluate(eval_args, model=self.model, diffusion=self.diffusion, data=self.data.dataset)
print(f'Evaluation results on {self.dataset}: {sorted(eval_dict["feats"].items())}')
for k, v in eval_dict["feats"].items():
if 'unconstrained' not in k:
self.train_platform.report_scalar(name=k, value=np.array(v).astype(float).mean(), iteration=self.step, group_name='Eval')
else:
self.train_platform.report_scalar(name=k, value=np.array(v).astype(float).mean(), iteration=self.step, group_name='Eval Unconstrained')
end_eval = time.time()
print(f'Evaluation time: {round(end_eval-start_eval)/60}min')
def run_step(self, batch, cond):
self.forward_backward(batch, cond) ## forward
self.mp_trainer.optimize(self.opt)
self._anneal_lr()
self.log_step()
def forward_backward(self, batch, cond):
self.mp_trainer.zero_grad()
for i in range(0, batch.shape[0], self.microbatch):
# Eliminates the microbatch feature
assert i == 0
assert self.microbatch == self.batch_size
micro = batch
micro_cond = cond
## micro-batch
last_batch = (i + self.microbatch) >= batch.shape[0]
t, weights = self.schedule_sampler.sample(micro.shape[0], dist_util.dev())
compute_losses = functools.partial(
self.diffusion.training_losses,
self.ddp_model,
micro, # [bs, ch, image_size, image_size]
t, # [bs](int) sampled timesteps
model_kwargs=micro_cond,
dataset=self.data.dataset
)
if last_batch or not self.use_ddp:
losses = compute_losses() ## compute lossses
else:
with self.ddp_model.no_sync():
losses = compute_losses()
if isinstance(self.schedule_sampler, LossAwareSampler):
self.schedule_sampler.update_with_local_losses(
t, losses["loss"].detach()
)
loss = (losses["loss"] * weights).mean()
log_loss_dict(
self.diffusion, t, {k: v * weights for k, v in losses.items()}
)
self.mp_trainer.backward(loss)
def predict_single_step(self, batch, cond, use_t=None):
# self.mp_trainer.zero_grad()
tot_samples = []
tot_targets = []
for i in range(0, batch.shape[0], self.microbatch):
# Eliminates the microbatch feature
assert i == 0
assert self.microbatch == self.batch_size
micro = batch
micro_cond = cond
## micro-batch ##
last_batch = (i + self.microbatch) >= batch.shape[0]
t, weights = self.schedule_sampler.sample(micro.shape[0], dist_util.dev())
if use_t is not None:
t = torch.zeros_like(t) + use_t
# batch: bsz x nnjoints x 3 x nnframes #
## === original sampling === ##
# terms, model_output, target, t = self.diffusion.predict_sample_single_step(self.ddp_model, micro, t, model_kwargs=micro_cond, noise=None, dataset=self.data.dataset)
### use p_sample_loop from the diffusion model ###
sample_fn = self.diffusion.p_sample_loop
samples = sample_fn(
self.ddp_model,
(micro.size(0), micro.size(1), micro.size(2), micro.size(3)),
clip_denoised=False,
model_kwargs=cond,
skip_timesteps=0,
init_image=micro,
# init_image=None,
progress=True,
dump_steps=None,
noise=None, ## noise ## #
const_noise=False, # whether to cond on noise ##
st_timestep=use_t,
)
tot_samples.append(samples)
tot_targets.append(micro)
model_output = torch.cat(tot_samples, dim=0)
target = torch.cat(tot_targets, dim=0)
print(f"Returning with model_output; {model_output.size()}, target: {target.size()}")
### returning the samples and tarets ###
return model_output, target
def predict_from_data(self):
# for epoch in range(self.num_epochs): #
# print(f'Starting epoch {epoch}') # the
## ==== a single pass for a single sequence ==== ##
tot_model_outputs = []
tot_targets = []
tot_st_idxes = []
tot_ed_idxes = []
tot_pert_verts = []
tot_verts = []
## motion; cond; data ##
for motion, cond in tqdm(self.data):
# if not (not self.lr_anneal_steps or self.step + self.resume_step < self.lr_anneal_steps):
# break # tingyouyiside
# print(f"motion: {motion.size()}, ") ## motion.to(self.device)
motion = motion.to(self.device)
cond['y'] = {key: val.to(self.device) if torch.is_tensor(val) else val for key, val in cond['y'].items()}
st_idxes = cond['y']['st_idx'] # st_idxes
ed_idxes = cond['y']['ed_idx'] # ed_idxes
pert_verts = cond['y']['pert_verts']
verts = cond['y']['verts']
if 'avg_joints' in cond['y']:
avg_joints = cond['y']['avg_joints']
std_joints = cond['y']['std_joints']
else:
avg_joints = None
std_joints = None
tot_pert_verts.append(pert_verts)
tot_verts.append(verts)
## generative denoising -> we want to use it for the denoising task ##
# std_joints: bsz x 1
# avg_joints: bsz x 1 x 3 --> mean of joints for each batch
## predict_single_step ##
use_t = 100
model_output, target = self.predict_single_step(motion, cond, use_t=use_t)
## model_output: ([6, 21, 3, 60]), target: torch.Size([6, 21, 3, 60])
if avg_joints is not None:
# ### model_output, target ###
# model_output = (model_output * std_joints.unsqueeze(-1).unsqueeze(-1)) + avg_joints.unsqueeze(-1)
# target = (target * std_joints.unsqueeze(-1).unsqueeze(-1)) + avg_joints.unsqueeze(-1)
## std_joints; ##
### model_output, target ###
print(f"std_joints: {std_joints.size()}, avg_joints: {avg_joints.size()}")
model_output = (model_output * std_joints.permute(0, 2, 3, 1)) + avg_joints.permute(0, 2, 3, 1)
target = (target * std_joints.permute(0, 2, 3, 1)) + avg_joints.permute(0, 2, 3, 1)
tot_st_idxes.append(st_idxes)
tot_ed_idxes.append(ed_idxes)
tot_targets.append(target)
tot_model_outputs.append(model_output)
tot_st_idxes = torch.cat(tot_st_idxes, dim=0)
tot_ed_idxes = torch.cat(tot_ed_idxes, dim=0)
tot_targets = torch.cat(tot_targets, dim=0)
tot_model_outputs = torch.cat(tot_model_outputs, dim=0)
tot_pert_verts = torch.cat(tot_pert_verts, dim=0)
tot_verts = torch.cat(tot_verts, dim=0)
return tot_targets, tot_model_outputs, tot_st_idxes, tot_ed_idxes, tot_pert_verts, tot_verts
# ## run current motion and cond
# self.run_step(motion, cond)
# if self.step % self.log_interval == 0:
# for k,v in logger.get_current().name2val.items():
# if k == 'loss':
# print('step[{}]: loss[{:0.5f}]'.format(self.step+self.resume_step, v))
# if k in ['step', 'samples'] or '_q' in k:
# continue
# else:
# self.train_platform.report_scalar(name=k, value=v, iteration=self.step, group_name='Loss')
# if self.step % self.save_interval == 0:
# ## save; model.eval;
# self.save()
# self.model.eval()
# self.evaluate()
# self.model.train()
# # Run for a finite amount of time in integration tests.
# if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0:
# return
# self.step += 1
# if not (not self.lr_anneal_steps or self.step + self.resume_step < self.lr_anneal_steps):
# break
# ## predict single
## manifold of valid hand trajectories ##
# Save the last checkpoint if it wasn't already saved.
# if (self.step - 1) % self.save_interval != 0:
# self.save()
# self.evaluate()
def _anneal_lr(self):
if not self.lr_anneal_steps:
return
frac_done = (self.step + self.resume_step) / self.lr_anneal_steps
lr = self.lr * (1 - frac_done)
for param_group in self.opt.param_groups:
param_group["lr"] = lr
def log_step(self):
logger.logkv("step", self.step + self.resume_step)
logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch)
def ckpt_file_name(self):
return f"model{(self.step+self.resume_step):09d}.pt"
def save(self):
def save_checkpoint(params):
state_dict = self.mp_trainer.master_params_to_state_dict(params)
# Do not save CLIP weights
clip_weights = [e for e in state_dict.keys() if e.startswith('clip_model.')]
for e in clip_weights:
del state_dict[e]
logger.log(f"saving model...")
filename = self.ckpt_file_name()
with bf.BlobFile(bf.join(self.save_dir, filename), "wb") as f:
torch.save(state_dict, f)
save_checkpoint(self.mp_trainer.master_params)
with bf.BlobFile(
bf.join(self.save_dir, f"opt{(self.step+self.resume_step):09d}.pt"),
"wb",
) as f:
torch.save(self.opt.state_dict(), f)
def parse_resume_step_from_filename(filename):
"""
Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the
checkpoint's number of steps.
"""
split = filename.split("model")
if len(split) < 2:
return 0
split1 = split[-1].split(".")[0]
try:
return int(split1)
except ValueError:
return 0
def get_blob_logdir():
# You can change this to be a separate path to save checkpoints to
# a blobstore or some external drive.
return logger.get_dir()
def find_resume_checkpoint():
# On your infrastructure, you may want to override this to automatically
# discover the latest checkpoint on your blob storage, etc.
return None
def log_loss_dict(diffusion, ts, losses):
for key, values in losses.items():
logger.logkv_mean(key, values.mean().item())
# Log the quantiles (four quartiles, in particular).
for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()):
quartile = int(4 * sub_t / diffusion.num_timesteps)
logger.logkv_mean(f"{key}_q{quartile}", sub_loss)