meow
init
d6d3a5b
import torch
def to_numpy(tensor):
if torch.is_tensor(tensor):
return tensor.cpu().numpy()
elif type(tensor).__module__ != 'numpy':
raise ValueError("Cannot convert {} to numpy array".format(
type(tensor)))
return tensor
def to_torch(ndarray):
if type(ndarray).__module__ == 'numpy':
return torch.from_numpy(ndarray)
elif not torch.is_tensor(ndarray):
raise ValueError("Cannot convert {} to torch tensor".format(
type(ndarray)))
return ndarray
def cleanexit():
import sys
import os
try:
sys.exit(0)
except SystemExit:
os._exit(0)
def load_model_wo_clip(model, state_dict):
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
assert len(unexpected_keys) == 0
assert all([k.startswith('clip_model.') for k in missing_keys])
def freeze_joints(x, joints_to_freeze):
# Freezes selected joint *rotations* as they appear in the first frame
# x [bs, [root+n_joints], joint_dim(6), seqlen]
frozen = x.detach().clone()
frozen[:, joints_to_freeze, :, :] = frozen[:, joints_to_freeze, :, :1]
return frozen