Spaces:
Runtime error
Runtime error
meow
commited on
Commit
β’
b7efb56
1
Parent(s):
d6d3a5b
readme
Browse files
README.md
CHANGED
@@ -1,462 +1,10 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
<a href="https://replicate.com/arielreplicate/motion_diffusion_model"><img src="https://replicate.com/arielreplicate/motion_diffusion_model/badge"></a>
|
12 |
-
|
13 |
-
The official PyTorch implementation of the paper [**"Human Motion Diffusion Model"**](https://arxiv.org/abs/2209.14916).
|
14 |
-
|
15 |
-
Please visit our [**webpage**](https://guytevet.github.io/mdm-page/) for more details.
|
16 |
-
|
17 |
-
![teaser](https://github.com/GuyTevet/mdm-page/raw/main/static/figures/github.gif)
|
18 |
-
|
19 |
-
#### Bibtex
|
20 |
-
If you find this code useful in your research, please cite:
|
21 |
-
|
22 |
-
```
|
23 |
-
@article{tevet2022human,
|
24 |
-
title={Human Motion Diffusion Model},
|
25 |
-
author={Tevet, Guy and Raab, Sigal and Gordon, Brian and Shafir, Yonatan and Bermano, Amit H and Cohen-Or, Daniel},
|
26 |
-
journal={arXiv preprint arXiv:2209.14916},
|
27 |
-
year={2022}
|
28 |
-
}
|
29 |
-
```
|
30 |
-
|
31 |
-
## News
|
32 |
-
|
33 |
-
π’ **23/Nov/22** - Fixed evaluation issue (#42) - Please pull and run `bash prepare/download_t2m_evaluators.sh` from the top of the repo to adapt.
|
34 |
-
|
35 |
-
π’ **4/Nov/22** - Added sampling, training and evaluation of unconstrained tasks.
|
36 |
-
Note slight env changes adapting to the new code. If you already have an installed environment, run `bash prepare/download_unconstrained_assets.sh; conda install -y -c anaconda scikit-learn
|
37 |
-
` to adapt.
|
38 |
-
|
39 |
-
π’ **3/Nov/22** - Added in-between and upper-body editing.
|
40 |
-
|
41 |
-
π’ **31/Oct/22** - Added sampling, training and evaluation of action-to-motion tasks.
|
42 |
-
|
43 |
-
π’ **9/Oct/22** - Added training and evaluation scripts.
|
44 |
-
Note slight env changes adapting to the new code. If you already have an installed environment, run `bash prepare/download_glove.sh; pip install clearml` to adapt.
|
45 |
-
|
46 |
-
π’ **6/Oct/22** - First release - sampling and rendering using pre-trained models.
|
47 |
-
|
48 |
-
|
49 |
-
## Getting started
|
50 |
-
|
51 |
-
This code was tested on `Ubuntu 18.04.5 LTS` and requires:
|
52 |
-
|
53 |
-
* Python 3.7
|
54 |
-
* conda3 or miniconda3
|
55 |
-
* CUDA capable GPU (one is enough)
|
56 |
-
|
57 |
-
### 1. Setup environment
|
58 |
-
|
59 |
-
Install ffmpeg (if not already installed):
|
60 |
-
|
61 |
-
```shell
|
62 |
-
sudo apt update
|
63 |
-
sudo apt install ffmpeg
|
64 |
-
```
|
65 |
-
For windows use [this](https://www.geeksforgeeks.org/how-to-install-ffmpeg-on-windows/) instead.
|
66 |
-
|
67 |
-
Setup conda env:
|
68 |
-
```shell
|
69 |
-
conda env create -f environment.yml
|
70 |
-
conda activate mdm
|
71 |
-
python -m spacy download en_core_web_sm
|
72 |
-
pip install git+https://github.com/openai/CLIP.git
|
73 |
-
```
|
74 |
-
|
75 |
-
Download dependencies:
|
76 |
-
|
77 |
-
<details>
|
78 |
-
<summary><b>Text to Motion</b></summary>
|
79 |
-
|
80 |
-
```bash
|
81 |
-
bash prepare/download_smpl_files.sh
|
82 |
-
bash prepare/download_glove.sh
|
83 |
-
bash prepare/download_t2m_evaluators.sh
|
84 |
-
```
|
85 |
-
</details>
|
86 |
-
|
87 |
-
<details>
|
88 |
-
<summary><b>Action to Motion</b></summary>
|
89 |
-
|
90 |
-
```bash
|
91 |
-
bash prepare/download_smpl_files.sh
|
92 |
-
bash prepare/download_recognition_models.sh
|
93 |
-
```
|
94 |
-
</details>
|
95 |
-
|
96 |
-
<details>
|
97 |
-
<summary><b>Unconstrained</b></summary>
|
98 |
-
|
99 |
-
```bash
|
100 |
-
bash prepare/download_smpl_files.sh
|
101 |
-
bash prepare/download_recognition_models.sh
|
102 |
-
bash prepare/download_recognition_unconstrained_models.sh
|
103 |
-
```
|
104 |
-
</details>
|
105 |
-
|
106 |
-
### 2. Get data
|
107 |
-
|
108 |
-
<details>
|
109 |
-
<summary><b>Text to Motion</b></summary>
|
110 |
-
|
111 |
-
There are two paths to get the data:
|
112 |
-
|
113 |
-
(a) **Go the easy way if** you just want to generate text-to-motion (excluding editing which does require motion capture data)
|
114 |
-
|
115 |
-
(b) **Get full data** to train and evaluate the model.
|
116 |
-
|
117 |
-
|
118 |
-
#### a. The easy way (text only)
|
119 |
-
|
120 |
-
**HumanML3D** - Clone HumanML3D, then copy the data dir to our repository:
|
121 |
-
|
122 |
-
```shell
|
123 |
-
cd ..
|
124 |
-
git clone https://github.com/EricGuo5513/HumanML3D.git
|
125 |
-
unzip ./HumanML3D/HumanML3D/texts.zip -d ./HumanML3D/HumanML3D/
|
126 |
-
cp -r HumanML3D/HumanML3D motion-diffusion-model/dataset/HumanML3D
|
127 |
-
cd motion-diffusion-model
|
128 |
-
```
|
129 |
-
|
130 |
-
|
131 |
-
#### b. Full data (text + motion capture)
|
132 |
-
|
133 |
-
**HumanML3D** - Follow the instructions in [HumanML3D](https://github.com/EricGuo5513/HumanML3D.git),
|
134 |
-
then copy the result dataset to our repository:
|
135 |
-
|
136 |
-
```shell
|
137 |
-
cp -r ../HumanML3D/HumanML3D ./dataset/HumanML3D
|
138 |
-
```
|
139 |
-
|
140 |
-
**KIT** - Download from [HumanML3D](https://github.com/EricGuo5513/HumanML3D.git) (no processing needed this time) and the place result in `./dataset/KIT-ML`
|
141 |
-
</details>
|
142 |
-
|
143 |
-
<details>
|
144 |
-
<summary><b>Action to Motion</b></summary>
|
145 |
-
|
146 |
-
**UESTC, HumanAct12**
|
147 |
-
```bash
|
148 |
-
bash prepare/download_a2m_datasets.sh
|
149 |
-
```
|
150 |
-
</details>
|
151 |
-
|
152 |
-
<details>
|
153 |
-
<summary><b>Unconstrained</b></summary>
|
154 |
-
|
155 |
-
**HumanAct12**
|
156 |
-
```bash
|
157 |
-
bash prepare/download_unconstrained_datasets.sh
|
158 |
-
```
|
159 |
-
</details>
|
160 |
-
|
161 |
-
### 3. Download the pretrained models
|
162 |
-
|
163 |
-
Download the model(s) you wish to use, then unzip and place them in `./save/`.
|
164 |
-
|
165 |
-
<details>
|
166 |
-
<summary><b>Text to Motion</b></summary>
|
167 |
-
|
168 |
-
**You need only the first one.**
|
169 |
-
|
170 |
-
**HumanML3D**
|
171 |
-
|
172 |
-
[humanml-encoder-512](https://drive.google.com/file/d/1PE0PK8e5a5j-7-Xhs5YET5U5pGh0c821/view?usp=sharing) (best model)
|
173 |
-
|
174 |
-
[humanml-decoder-512](https://drive.google.com/file/d/1q3soLadvVh7kJuJPd2cegMNY2xVuVudj/view?usp=sharing)
|
175 |
-
|
176 |
-
[humanml-decoder-with-emb-512](https://drive.google.com/file/d/1GnsW0K3UjuOkNkAWmjrGIUmeDDZrmPE5/view?usp=sharing)
|
177 |
-
|
178 |
-
**KIT**
|
179 |
-
|
180 |
-
[kit-encoder-512](https://drive.google.com/file/d/1SHCRcE0es31vkJMLGf9dyLe7YsWj7pNL/view?usp=sharing)
|
181 |
-
|
182 |
-
</details>
|
183 |
-
|
184 |
-
<details>
|
185 |
-
<summary><b>Action to Motion</b></summary>
|
186 |
-
|
187 |
-
**UESTC**
|
188 |
-
|
189 |
-
[uestc](https://drive.google.com/file/d/1goB2DJK4B-fLu2QmqGWKAqWGMTAO6wQ6/view?usp=sharing)
|
190 |
-
|
191 |
-
[uestc_no_fc](https://drive.google.com/file/d/1fpv3mR-qP9CYCsi9CrQhFqlLavcSQky6/view?usp=sharing)
|
192 |
-
|
193 |
-
**HumanAct12**
|
194 |
-
|
195 |
-
[humanact12](https://drive.google.com/file/d/154X8_Lgpec6Xj0glEGql7FVKqPYCdBFO/view?usp=sharing)
|
196 |
-
|
197 |
-
[humanact12_no_fc](https://drive.google.com/file/d/1frKVMBYNiN5Mlq7zsnhDBzs9vGJvFeiQ/view?usp=sharing)
|
198 |
-
|
199 |
-
</details>
|
200 |
-
|
201 |
-
<details>
|
202 |
-
<summary><b>Unconstrained</b></summary>
|
203 |
-
|
204 |
-
**HumanAct12**
|
205 |
-
|
206 |
-
[humanact12_unconstrained](https://drive.google.com/file/d/1uG68m200pZK3pD-zTmPXu5XkgNpx_mEx/view?usp=share_link)
|
207 |
-
|
208 |
-
</details>
|
209 |
-
|
210 |
-
|
211 |
-
## Example Usage
|
212 |
-
|
213 |
-
|
214 |
-
example usage and results on TACO dataset
|
215 |
-
|
216 |
-
|
217 |
-
| Input | Result | Overlayed |
|
218 |
-
| :----------------------: | :---------------------: | :-----------------------: |
|
219 |
-
| ![](assets/taco-20231104_017-src-a.gif) | ![](assets/taco-20231104_017-res-a.gif) | ![](assets/taco-20231104_017-overlayed-a.gif) |
|
220 |
-
|
221 |
-
|
222 |
-
Follow steps below to reproduce the above result.
|
223 |
-
|
224 |
-
1. **Denoising**
|
225 |
-
```bash
|
226 |
-
bash scripts/val_examples/predict_taco_rndseed_spatial_20231104_017.sh
|
227 |
-
```
|
228 |
-
Ten random seeds will be utilizd for prediction. The predicted results will be saved in the folder `./data/taco/result`.
|
229 |
-
2. **Mesh reconstruction**
|
230 |
-
```bash
|
231 |
-
bash scripts/val_examples/reconstruct_taco_20231104_017.sh
|
232 |
-
```
|
233 |
-
Results will be saved under the same folder with the above step.
|
234 |
-
3. **Extracting results and visualization**
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
<details>
|
239 |
-
<summary><b>Text to Motion</b></summary>
|
240 |
-
|
241 |
-
### Generate from test set prompts
|
242 |
-
|
243 |
-
```shell
|
244 |
-
python -m sample.generate --model_path ./save/humanml_trans_enc_512/model000200000.pt --num_samples 10 --num_repetitions 3
|
245 |
-
```
|
246 |
-
|
247 |
-
### Generate from your text file
|
248 |
-
|
249 |
-
```shell
|
250 |
-
python -m sample.generate --model_path ./save/humanml_trans_enc_512/model000200000.pt --input_text ./assets/example_text_prompts.txt
|
251 |
-
```
|
252 |
-
|
253 |
-
### Generate a single prompt
|
254 |
-
|
255 |
-
```shell
|
256 |
-
python -m sample.generate --model_path ./save/humanml_trans_enc_512/model000200000.pt --text_prompt "the person walked forward and is picking up his toolbox."
|
257 |
-
```
|
258 |
-
</details>
|
259 |
-
|
260 |
-
<details>
|
261 |
-
<summary><b>Action to Motion</b></summary>
|
262 |
-
|
263 |
-
### Generate from test set actions
|
264 |
-
|
265 |
-
```shell
|
266 |
-
python -m sample.generate --model_path ./save/humanact12/model000350000.pt --num_samples 10 --num_repetitions 3
|
267 |
-
```
|
268 |
-
|
269 |
-
### Generate from your actions file
|
270 |
-
|
271 |
-
```shell
|
272 |
-
python -m sample.generate --model_path ./save/humanact12/model000350000.pt --action_file ./assets/example_action_names_humanact12.txt
|
273 |
-
```
|
274 |
-
|
275 |
-
### Generate a single action
|
276 |
-
|
277 |
-
```shell
|
278 |
-
python -m sample.generate --model_path ./save/humanact12/model000350000.pt --text_prompt "drink"
|
279 |
-
```
|
280 |
-
</details>
|
281 |
-
|
282 |
-
<details>
|
283 |
-
<summary><b>Unconstrained</b></summary>
|
284 |
-
|
285 |
-
```shell
|
286 |
-
python -m sample.generate --model_path ./save/unconstrained/model000450000.pt --num_samples 10 --num_repetitions 3
|
287 |
-
```
|
288 |
-
|
289 |
-
By abuse of notation, (num_samples * num_repetitions) samples are created, and are visually organized in a display of num_samples rows and num_repetitions columns.
|
290 |
-
|
291 |
-
</details>
|
292 |
-
|
293 |
-
**You may also define:**
|
294 |
-
* `--device` id.
|
295 |
-
* `--seed` to sample different prompts.
|
296 |
-
* `--motion_length` (text-to-motion only) in seconds (maximum is 9.8[sec]).
|
297 |
-
|
298 |
-
**Running those will get you:**
|
299 |
-
|
300 |
-
* `results.npy` file with text prompts and xyz positions of the generated animation
|
301 |
-
* `sample##_rep##.mp4` - a stick figure animation for each generated motion.
|
302 |
-
|
303 |
-
It will look something like this:
|
304 |
-
|
305 |
-
![example](assets/example_stick_fig.gif)
|
306 |
-
|
307 |
-
You can stop here, or render the SMPL mesh using the following script.
|
308 |
-
|
309 |
-
### Render SMPL mesh
|
310 |
-
|
311 |
-
To create SMPL mesh per frame run:
|
312 |
-
|
313 |
-
```shell
|
314 |
-
python -m visualize.render_mesh --input_path /path/to/mp4/stick/figure/file
|
315 |
-
```
|
316 |
-
|
317 |
-
**This script outputs:**
|
318 |
-
* `sample##_rep##_smpl_params.npy` - SMPL parameters (thetas, root translations, vertices and faces)
|
319 |
-
* `sample##_rep##_obj` - Mesh per frame in `.obj` format.
|
320 |
-
|
321 |
-
**Notes:**
|
322 |
-
* The `.obj` can be integrated into Blender/Maya/3DS-MAX and rendered using them.
|
323 |
-
* This script is running [SMPLify](https://smplify.is.tue.mpg.de/) and needs GPU as well (can be specified with the `--device` flag).
|
324 |
-
* **Important** - Do not change the original `.mp4` path before running the script.
|
325 |
-
|
326 |
-
**Notes for 3d makers:**
|
327 |
-
* You have two ways to animate the sequence:
|
328 |
-
1. Use the [SMPL add-on](https://smpl.is.tue.mpg.de/index.html) and the theta parameters saved to `sample##_rep##_smpl_params.npy` (we always use beta=0 and the gender-neutral model).
|
329 |
-
1. A more straightforward way is using the mesh data itself. All meshes have the same topology (SMPL), so you just need to keyframe vertex locations.
|
330 |
-
Since the OBJs are not preserving vertices order, we also save this data to the `sample##_rep##_smpl_params.npy` file for your convenience.
|
331 |
-
|
332 |
-
## Motion Editing
|
333 |
-
|
334 |
-
* This feature is available for text-to-motion datasets (HumanML3D and KIT).
|
335 |
-
* In order to use it, you need to acquire the full data (not just the texts).
|
336 |
-
* We support the two modes presented in the paper: `in_between` and `upper_body`.
|
337 |
-
|
338 |
-
### Unconditioned editing
|
339 |
-
|
340 |
-
```shell
|
341 |
-
python -m sample.edit --model_path ./save/humanml_trans_enc_512/model000200000.pt --edit_mode in_between
|
342 |
-
```
|
343 |
-
|
344 |
-
**You may also define:**
|
345 |
-
* `--num_samples` (default is 10) / `--num_repetitions` (default is 3).
|
346 |
-
* `--device` id.
|
347 |
-
* `--seed` to sample different prompts.
|
348 |
-
* `--edit_mode upper_body` For upper body editing (lower body is fixed).
|
349 |
-
|
350 |
-
|
351 |
-
The output will look like this (blue frames are from the input motion; orange were generated by the model):
|
352 |
-
|
353 |
-
![example](assets/in_between_edit.gif)
|
354 |
-
|
355 |
-
* As in *Motion Synthesis*, you may follow the **Render SMPL mesh** section to obtain meshes for your edited motions.
|
356 |
-
|
357 |
-
### Text conditioned editing
|
358 |
-
|
359 |
-
Just add the text conditioning using `--text_condition`. For example:
|
360 |
-
|
361 |
-
```shell
|
362 |
-
python -m sample.edit --model_path ./save/humanml_trans_enc_512/model000200000.pt --edit_mode upper_body --text_condition "A person throws a ball"
|
363 |
-
```
|
364 |
-
|
365 |
-
The output will look like this (blue joints are from the input motion; orange were generated by the model):
|
366 |
-
|
367 |
-
![example](assets/upper_body_edit.gif)
|
368 |
-
|
369 |
-
## Train your own MDM
|
370 |
-
|
371 |
-
<details>
|
372 |
-
<summary><b>Text to Motion</b></summary>
|
373 |
-
|
374 |
-
**HumanML3D**
|
375 |
-
```shell
|
376 |
-
python -m train.train_mdm --save_dir save/my_humanml_trans_enc_512 --dataset humanml
|
377 |
-
```
|
378 |
-
|
379 |
-
**KIT**
|
380 |
-
```shell
|
381 |
-
python -m train.train_mdm --save_dir save/my_kit_trans_enc_512 --dataset kit
|
382 |
-
```
|
383 |
-
</details>
|
384 |
-
<details>
|
385 |
-
<summary><b>Action to Motion</b></summary>
|
386 |
-
|
387 |
-
```shell
|
388 |
-
python -m train.train_mdm --save_dir save/my_name --dataset {humanact12,uestc} --cond_mask_prob 0 --lambda_rcxyz 1 --lambda_vel 1 --lambda_fc 1
|
389 |
-
```
|
390 |
-
</details>
|
391 |
-
|
392 |
-
<details>
|
393 |
-
<summary><b>Unconstrained</b></summary>
|
394 |
-
|
395 |
-
```shell
|
396 |
-
python -m train.train_mdm --save_dir save/my_name --dataset humanact12 --cond_mask_prob 0 --lambda_rcxyz 1 --lambda_vel 1 --lambda_fc 1 --unconstrained
|
397 |
-
```
|
398 |
-
</details>
|
399 |
-
|
400 |
-
* Use `--device` to define GPU id.
|
401 |
-
* Use `--arch` to choose one of the architectures reported in the paper `{trans_enc, trans_dec, gru}` (`trans_enc` is default).
|
402 |
-
* Add `--train_platform_type {ClearmlPlatform, TensorboardPlatform}` to track results with either [ClearML](https://clear.ml/) or [Tensorboard](https://www.tensorflow.org/tensorboard).
|
403 |
-
* Add `--eval_during_training` to run a short (90 minutes) evaluation for each saved checkpoint.
|
404 |
-
This will slow down training but will give you better monitoring.
|
405 |
-
|
406 |
-
## Evaluate
|
407 |
-
|
408 |
-
<details>
|
409 |
-
<summary><b>Text to Motion</b></summary>
|
410 |
-
|
411 |
-
* Takes about 20 hours (on a single GPU)
|
412 |
-
* The output of this script for the pre-trained models (as was reported in the paper) is provided in the checkpoints zip file.
|
413 |
-
|
414 |
-
**HumanML3D**
|
415 |
-
```shell
|
416 |
-
python -m eval.eval_humanml --model_path ./save/humanml_trans_enc_512/model000475000.pt
|
417 |
-
```
|
418 |
-
|
419 |
-
**KIT**
|
420 |
-
```shell
|
421 |
-
python -m eval.eval_humanml --model_path ./save/kit_trans_enc_512/model000400000.pt
|
422 |
-
```
|
423 |
-
</details>
|
424 |
-
|
425 |
-
<details>
|
426 |
-
<summary><b>Action to Motion</b></summary>
|
427 |
-
|
428 |
-
* Takes about 7 hours for UESTC and 2 hours for HumanAct12 (on a single GPU)
|
429 |
-
* The output of this script for the pre-trained models (as was reported in the paper) is provided in the checkpoints zip file.
|
430 |
-
|
431 |
-
```shell
|
432 |
-
python -m eval.eval_humanact12_uestc --model <path-to-model-ckpt> --eval_mode full
|
433 |
-
```
|
434 |
-
where `path-to-model-ckpt` can be a path to any of the pretrained action-to-motion models listed above, or to a checkpoint trained by the user.
|
435 |
-
|
436 |
-
</details>
|
437 |
-
|
438 |
-
|
439 |
-
<details>
|
440 |
-
<summary><b>Unconstrained</b></summary>
|
441 |
-
|
442 |
-
* Takes about 3 hours (on a single GPU)
|
443 |
-
|
444 |
-
```shell
|
445 |
-
python -m eval.eval_humanact12_uestc --model ./save/unconstrained/model000450000.pt --eval_mode full
|
446 |
-
```
|
447 |
-
|
448 |
-
Precision and recall are not computed to save computing time. If you wish to compute them, edit the file eval/a2m/gru_eval.py and change the string `fast=True` to `fast=False`.
|
449 |
-
|
450 |
-
</details>
|
451 |
-
|
452 |
-
## Acknowledgments
|
453 |
-
|
454 |
-
This code is standing on the shoulders of giants. We want to thank the following contributors
|
455 |
-
that our code is based on:
|
456 |
-
|
457 |
-
[guided-diffusion](https://github.com/openai/guided-diffusion), [MotionCLIP](https://github.com/GuyTevet/MotionCLIP), [text-to-motion](https://github.com/EricGuo5513/text-to-motion), [actor](https://github.com/Mathux/ACTOR), [joints2smpl](https://github.com/wangsen1312/joints2smpl), [MoDi](https://github.com/sigal-raab/MoDi).
|
458 |
-
|
459 |
-
## License
|
460 |
-
This code is distributed under an [MIT LICENSE](LICENSE).
|
461 |
-
|
462 |
-
Note that our code depends on other libraries, including CLIP, SMPL, SMPL-X, PyTorch3D, and uses datasets that each have their own respective licenses that must also be followed.
|
|
|
1 |
+
---
|
2 |
+
title: {{title}}
|
3 |
+
emoji: {{emoji}}
|
4 |
+
colorFrom: {{colorFrom}}
|
5 |
+
colorTo: {{colorTo}}
|
6 |
+
sdk: {{sdk}}
|
7 |
+
sdk_version: {{sdkVersion}}
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|