import cv2 import numpy as np import torch from torch.nn import functional as F """ Taken from https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html Just to avoid installing pytorch3d at times """ def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor: """ Convert a unit quaternion to a standard form: one in which the real part is non negative. Args: quaternions: Quaternions with real part first, as tensor of shape (..., 4). Returns: Standardized quaternions as tensor of shape (..., 4). """ return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions) def quaternion_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: """ Multiply two quaternions representing rotations, returning the quaternion representing their composition, i.e. the versor with nonnegative real part. Usual torch rules for broadcasting apply. Args: a: Quaternions as tensor of shape (..., 4), real part first. b: Quaternions as tensor of shape (..., 4), real part first. Returns: The product of a and b, a tensor of quaternions of shape (..., 4). """ ab = quaternion_raw_multiply(a, b) return standardize_quaternion(ab) def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: """ Returns torch.sqrt(torch.max(0, x)) but with a zero subgradient where x is 0. """ ret = torch.zeros_like(x) positive_mask = x > 0 ret[positive_mask] = torch.sqrt(x[positive_mask]) return ret def quaternion_to_axis_angle(quaternions: torch.Tensor) -> torch.Tensor: """ Convert rotations given as quaternions to axis/angle. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. """ norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True) half_angles = torch.atan2(norms, quaternions[..., :1]) angles = 2 * half_angles eps = 1e-6 small_angles = angles.abs() < eps sin_half_angles_over_angles = torch.empty_like(angles) sin_half_angles_over_angles[~small_angles] = ( torch.sin(half_angles[~small_angles]) / angles[~small_angles] ) # for x small, sin(x/2) is about x/2 - (x/2)^3/6 # so sin(x/2)/x is about 1/2 - (x*x)/48 sin_half_angles_over_angles[small_angles] = ( 0.5 - (angles[small_angles] * angles[small_angles]) / 48 ) return quaternions[..., 1:] / sin_half_angles_over_angles def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor: """ Convert rotations given as quaternions to rotation matrices. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotation matrices as tensor of shape (..., 3, 3). """ r, i, j, k = torch.unbind(quaternions, -1) # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. two_s = 2.0 / (quaternions * quaternions).sum(-1) o = torch.stack( ( 1 - two_s * (j * j + k * k), two_s * (i * j - k * r), two_s * (i * k + j * r), two_s * (i * j + k * r), 1 - two_s * (i * i + k * k), two_s * (j * k - i * r), two_s * (i * k - j * r), two_s * (j * k + i * r), 1 - two_s * (i * i + j * j), ), -1, ) return o.reshape(quaternions.shape[:-1] + (3, 3)) def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor: """ Convert rotations given as rotation matrices to quaternions. Args: matrix: Rotation matrices as tensor of shape (..., 3, 3). Returns: quaternions with real part first, as tensor of shape (..., 4). """ if matrix.size(-1) != 3 or matrix.size(-2) != 3: raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") batch_dim = matrix.shape[:-2] m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind( matrix.reshape(batch_dim + (9,)), dim=-1 ) q_abs = _sqrt_positive_part( torch.stack( [ 1.0 + m00 + m11 + m22, 1.0 + m00 - m11 - m22, 1.0 - m00 + m11 - m22, 1.0 - m00 - m11 + m22, ], dim=-1, ) ) # we produce the desired quaternion multiplied by each of r, i, j, k quat_by_rijk = torch.stack( [ # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), ], dim=-2, ) # We floor here at 0.1 but the exact level is not important; if q_abs is small, # the candidate won't be picked. flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) # if not for numerical problems, quat_candidates[i] should be same (up to a sign), # forall i; we pick the best-conditioned one (with the largest denominator) return quat_candidates[ F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : ].reshape(batch_dim + (4,)) def matrix_to_axis_angle(matrix: torch.Tensor) -> torch.Tensor: """ Convert rotations given as rotation matrices to axis/angle. Args: matrix: Rotation matrices as tensor of shape (..., 3, 3). Returns: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. """ return quaternion_to_axis_angle(matrix_to_quaternion(matrix)) def rot_aa(aa, rot): """Rotate axis angle parameters.""" # pose parameters R = np.array( [ [np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], [np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], [0, 0, 1], ] ) # find the rotation of the body in camera frame per_rdg, _ = cv2.Rodrigues(aa) # apply the global rotation to the global orientation resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg)) aa = (resrot.T)[0] return aa def quat2mat(quat): """ This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L50 Convert quaternion coefficients to rotation matrix. Args: quat: size = [batch_size, 4] 4 <===>(w, x, y, z) Returns: Rotation matrix corresponding to the quaternion -- size = [batch_size, 3, 3] """ norm_quat = quat norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] batch_size = quat.size(0) w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) wx, wy, wz = w * x, w * y, w * z xy, xz, yz = x * y, x * z, y * z rotMat = torch.stack( [ w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2, ], dim=1, ).view(batch_size, 3, 3) return rotMat def batch_aa2rot(axisang): # This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L37 assert len(axisang.shape) == 2 assert axisang.shape[1] == 3 # axisang N x 3 axisang_norm = torch.norm(axisang + 1e-8, p=2, dim=1) angle = torch.unsqueeze(axisang_norm, -1) axisang_normalized = torch.div(axisang, angle) angle = angle * 0.5 v_cos = torch.cos(angle) v_sin = torch.sin(angle) quat = torch.cat([v_cos, v_sin * axisang_normalized], dim=1) rot_mat = quat2mat(quat) rot_mat = rot_mat.view(rot_mat.shape[0], 9) return rot_mat def batch_rot2aa(Rs): assert len(Rs.shape) == 3 assert Rs.shape[1] == Rs.shape[2] assert Rs.shape[1] == 3 """ Rs is B x 3 x 3 void cMathUtil::RotMatToAxisAngle(const tMatrix& mat, tVector& out_axis, double& out_theta) { double c = 0.5 * (mat(0, 0) + mat(1, 1) + mat(2, 2) - 1); c = cMathUtil::Clamp(c, -1.0, 1.0); out_theta = std::acos(c); if (std::abs(out_theta) < 0.00001) { out_axis = tVector(0, 0, 1, 0); } else { double m21 = mat(2, 1) - mat(1, 2); double m02 = mat(0, 2) - mat(2, 0); double m10 = mat(1, 0) - mat(0, 1); double denom = std::sqrt(m21 * m21 + m02 * m02 + m10 * m10); out_axis[0] = m21 / denom; out_axis[1] = m02 / denom; out_axis[2] = m10 / denom; out_axis[3] = 0; } } """ cos = 0.5 * (torch.stack([torch.trace(x) for x in Rs]) - 1) cos = torch.clamp(cos, -1, 1) theta = torch.acos(cos) m21 = Rs[:, 2, 1] - Rs[:, 1, 2] m02 = Rs[:, 0, 2] - Rs[:, 2, 0] m10 = Rs[:, 1, 0] - Rs[:, 0, 1] denom = torch.sqrt(m21 * m21 + m02 * m02 + m10 * m10) axis0 = torch.where(torch.abs(theta) < 0.00001, m21, m21 / denom) axis1 = torch.where(torch.abs(theta) < 0.00001, m02, m02 / denom) axis2 = torch.where(torch.abs(theta) < 0.00001, m10, m10 / denom) return theta.unsqueeze(1) * torch.stack([axis0, axis1, axis2], 1) def batch_rodrigues(theta): """Convert axis-angle representation to rotation matrix. Args: theta: size = [B, 3] Returns: Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] """ l1norm = torch.norm(theta + 1e-8, p=2, dim=1) angle = torch.unsqueeze(l1norm, -1) normalized = torch.div(theta, angle) angle = angle * 0.5 v_cos = torch.cos(angle) v_sin = torch.sin(angle) quat = torch.cat([v_cos, v_sin * normalized], dim=1) return quat_to_rotmat(quat) def quat_to_rotmat(quat): """Convert quaternion coefficients to rotation matrix. Args: quat: size = [B, 4] 4 <===>(w, x, y, z) Returns: Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] """ norm_quat = quat norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] B = quat.size(0) w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) wx, wy, wz = w * x, w * y, w * z xy, xz, yz = x * y, x * z, y * z rotMat = torch.stack( [ w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2, ], dim=1, ).view(B, 3, 3) return rotMat def rot6d_to_rotmat(x): """Convert 6D rotation representation to 3x3 rotation matrix. Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 Input: (B,6) Batch of 6-D rotation representations Output: (B,3,3) Batch of corresponding rotation matrices """ x = x.reshape(-1, 3, 2) a1 = x[:, :, 0] a2 = x[:, :, 1] b1 = F.normalize(a1) b2 = F.normalize(a2 - torch.einsum("bi,bi->b", b1, a2).unsqueeze(-1) * b1) b3 = torch.cross(b1, b2) return torch.stack((b1, b2, b3), dim=-1) def rotmat_to_rot6d(x): rotmat = x.reshape(-1, 3, 3) rot6d = rotmat[:, :, :2].reshape(x.shape[0], -1) return rot6d def rotation_matrix_to_angle_axis(rotation_matrix): """ This function is borrowed from https://github.com/kornia/kornia Convert 3x4 rotation matrix to Rodrigues vector Args: rotation_matrix (Tensor): rotation matrix. Returns: Tensor: Rodrigues vector transformation. Shape: - Input: :math:`(N, 3, 4)` - Output: :math:`(N, 3)` Example: >>> input = torch.rand(2, 3, 4) # Nx4x4 >>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 """ if rotation_matrix.shape[1:] == (3, 3): rot_mat = rotation_matrix.reshape(-1, 3, 3) hom = ( torch.tensor([0, 0, 1], dtype=torch.float32, device=rotation_matrix.device) .reshape(1, 3, 1) .expand(rot_mat.shape[0], -1, -1) ) rotation_matrix = torch.cat([rot_mat, hom], dim=-1) quaternion = rotation_matrix_to_quaternion(rotation_matrix) aa = quaternion_to_angle_axis(quaternion) aa[torch.isnan(aa)] = 0.0 return aa def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: """ This function is borrowed from https://github.com/kornia/kornia Convert quaternion vector to angle axis of rotation. Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h Args: quaternion (torch.Tensor): tensor with quaternions. Return: torch.Tensor: tensor with angle axis of rotation. Shape: - Input: :math:`(*, 4)` where `*` means, any number of dimensions - Output: :math:`(*, 3)` Example: >>> quaternion = torch.rand(2, 4) # Nx4 >>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 """ if not torch.is_tensor(quaternion): raise TypeError( "Input type is not a torch.Tensor. Got {}".format(type(quaternion)) ) if not quaternion.shape[-1] == 4: raise ValueError( "Input must be a tensor of shape Nx4 or 4. Got {}".format(quaternion.shape) ) # unpack input and compute conversion q1: torch.Tensor = quaternion[..., 1] q2: torch.Tensor = quaternion[..., 2] q3: torch.Tensor = quaternion[..., 3] sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) cos_theta: torch.Tensor = quaternion[..., 0] two_theta: torch.Tensor = 2.0 * torch.where( cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), torch.atan2(sin_theta, cos_theta), ) k_pos: torch.Tensor = two_theta / sin_theta k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] angle_axis[..., 0] += q1 * k angle_axis[..., 1] += q2 * k angle_axis[..., 2] += q3 * k return angle_axis def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): """ This function is borrowed from https://github.com/kornia/kornia Convert 3x4 rotation matrix to 4d quaternion vector This algorithm is based on algorithm described in https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 Args: rotation_matrix (Tensor): the rotation matrix to convert. Return: Tensor: the rotation in quaternion Shape: - Input: :math:`(N, 3, 4)` - Output: :math:`(N, 4)` Example: >>> input = torch.rand(4, 3, 4) # Nx3x4 >>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 """ if not torch.is_tensor(rotation_matrix): raise TypeError( "Input type is not a torch.Tensor. Got {}".format(type(rotation_matrix)) ) if len(rotation_matrix.shape) > 3: raise ValueError( "Input size must be a three dimensional tensor. Got {}".format( rotation_matrix.shape ) ) if not rotation_matrix.shape[-2:] == (3, 4): raise ValueError( "Input size must be a N x 3 x 4 tensor. Got {}".format( rotation_matrix.shape ) ) rmat_t = torch.transpose(rotation_matrix, 1, 2) mask_d2 = rmat_t[:, 2, 2] < eps mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q0 = torch.stack( [ rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], ], -1, ) t0_rep = t0.repeat(4, 1).t() t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q1 = torch.stack( [ rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1], ], -1, ) t1_rep = t1.repeat(4, 1).t() t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q2 = torch.stack( [ rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2, ], -1, ) t2_rep = t2.repeat(4, 1).t() t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q3 = torch.stack( [ t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0], ], -1, ) t3_rep = t3.repeat(4, 1).t() mask_c0 = mask_d2 * mask_d0_d1 mask_c1 = mask_d2 * ~mask_d0_d1 mask_c2 = ~mask_d2 * mask_d0_nd1 mask_c3 = ~mask_d2 * ~mask_d0_nd1 mask_c0 = mask_c0.view(-1, 1).type_as(q0) mask_c1 = mask_c1.view(-1, 1).type_as(q1) mask_c2 = mask_c2.view(-1, 1).type_as(q2) mask_c3 = mask_c3.view(-1, 1).type_as(q3) q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 q /= torch.sqrt( t0_rep * mask_c0 + t1_rep * mask_c1 + t2_rep * mask_c2 # noqa + t3_rep * mask_c3 ) # noqa q *= 0.5 return q def batch_euler2matrix(r): return quaternion_to_rotation_matrix(euler_to_quaternion(r)) def euler_to_quaternion(r): x = r[..., 0] y = r[..., 1] z = r[..., 2] z = z / 2.0 y = y / 2.0 x = x / 2.0 cz = torch.cos(z) sz = torch.sin(z) cy = torch.cos(y) sy = torch.sin(y) cx = torch.cos(x) sx = torch.sin(x) quaternion = torch.zeros_like(r.repeat(1, 2))[..., :4].to(r.device) quaternion[..., 0] += cx * cy * cz - sx * sy * sz quaternion[..., 1] += cx * sy * sz + cy * cz * sx quaternion[..., 2] += cx * cz * sy - sx * cy * sz quaternion[..., 3] += cx * cy * sz + sx * cz * sy return quaternion def quaternion_to_rotation_matrix(quat): """Convert quaternion coefficients to rotation matrix. Args: quat: size = [B, 4] 4 <===>(w, x, y, z) Returns: Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] """ norm_quat = quat norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] B = quat.size(0) w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) wx, wy, wz = w * x, w * y, w * z xy, xz, yz = x * y, x * z, y * z rotMat = torch.stack( [ w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2, ], dim=1, ).view(B, 3, 3) return rotMat def euler_angles_from_rotmat(R): """ computer euler angles for rotation around x, y, z axis from rotation amtrix R: 4x4 rotation matrix https://www.gregslabaugh.net/publications/euler.pdf """ r21 = np.round(R[:, 2, 0].item(), 4) if abs(r21) != 1: y_angle1 = -1 * torch.asin(R[:, 2, 0]) y_angle2 = math.pi + torch.asin(R[:, 2, 0]) cy1, cy2 = torch.cos(y_angle1), torch.cos(y_angle2) x_angle1 = torch.atan2(R[:, 2, 1] / cy1, R[:, 2, 2] / cy1) x_angle2 = torch.atan2(R[:, 2, 1] / cy2, R[:, 2, 2] / cy2) z_angle1 = torch.atan2(R[:, 1, 0] / cy1, R[:, 0, 0] / cy1) z_angle2 = torch.atan2(R[:, 1, 0] / cy2, R[:, 0, 0] / cy2) s1 = (x_angle1, y_angle1, z_angle1) s2 = (x_angle2, y_angle2, z_angle2) s = (s1, s2) else: z_angle = torch.tensor([0], device=R.device).float() if r21 == -1: y_angle = torch.tensor([math.pi / 2], device=R.device).float() x_angle = z_angle + torch.atan2(R[:, 0, 1], R[:, 0, 2]) else: y_angle = -torch.tensor([math.pi / 2], device=R.device).float() x_angle = -z_angle + torch.atan2(-R[:, 0, 1], R[:, 0, 2]) s = ((x_angle, y_angle, z_angle),) return s def quaternion_raw_multiply(a, b): """ Source: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py Multiply two quaternions. Usual torch rules for broadcasting apply. Args: a: Quaternions as tensor of shape (..., 4), real part first. b: Quaternions as tensor of shape (..., 4), real part first. Returns: The product of a and b, a tensor of quaternions shape (..., 4). """ aw, ax, ay, az = torch.unbind(a, -1) bw, bx, by, bz = torch.unbind(b, -1) ow = aw * bw - ax * bx - ay * by - az * bz ox = aw * bx + ax * bw + ay * bz - az * by oy = aw * by - ax * bz + ay * bw + az * bx oz = aw * bz + ax * by - ay * bx + az * bw return torch.stack((ow, ox, oy, oz), -1) def quaternion_invert(quaternion): """ Source: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py Given a quaternion representing rotation, get the quaternion representing its inverse. Args: quaternion: Quaternions as tensor of shape (..., 4), with real part first, which must be versors (unit quaternions). Returns: The inverse, a tensor of quaternions of shape (..., 4). """ return quaternion * quaternion.new_tensor([1, -1, -1, -1]) def quaternion_apply(quaternion, point): """ Source: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py Apply the rotation given by a quaternion to a 3D point. Usual torch rules for broadcasting apply. Args: quaternion: Tensor of quaternions, real part first, of shape (..., 4). point: Tensor of 3D points of shape (..., 3). Returns: Tensor of rotated points of shape (..., 3). """ if point.size(-1) != 3: raise ValueError(f"Points are not in 3D, f{point.shape}.") real_parts = point.new_zeros(point.shape[:-1] + (1,)) point_as_quaternion = torch.cat((real_parts, point), -1) out = quaternion_raw_multiply( quaternion_raw_multiply(quaternion, point_as_quaternion), quaternion_invert(quaternion), ) return out[..., 1:] def axis_angle_to_quaternion(axis_angle: torch.Tensor) -> torch.Tensor: """ Source: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py Convert rotations given as axis/angle to quaternions. Args: axis_angle: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. Returns: quaternions with real part first, as tensor of shape (..., 4). """ angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) half_angles = angles * 0.5 eps = 1e-6 small_angles = angles.abs() < eps sin_half_angles_over_angles = torch.empty_like(angles) sin_half_angles_over_angles[~small_angles] = ( torch.sin(half_angles[~small_angles]) / angles[~small_angles] ) # for x small, sin(x/2) is about x/2 - (x/2)^3/6 # so sin(x/2)/x is about 1/2 - (x*x)/48 sin_half_angles_over_angles[small_angles] = ( 0.5 - (angles[small_angles] * angles[small_angles]) / 48 ) quaternions = torch.cat( [torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 ) return quaternions