import numpy as np # import gradio as gr import os import tempfile import shutil # # from gradio_inter.predict_from_file import predict_from_file from gradio_inter.create_bash_file import create_bash_file def create_temp_file(path: str) -> str: temp_dir = tempfile.gettempdir() temp_folder = os.path.join(temp_dir, "denoising") os.makedirs(temp_folder, exist_ok=True) # Clean up directory # for i in os.listdir(temp_folder): # print("Removing", i) # os.remove(os.path.join(temp_folder, i)) temp_path = os.path.join(temp_folder, path.split("/")[-1]) shutil.copy2(path, temp_path) return temp_path # from gradio_inter.predict import predict_from_data # from gradio_inter.predi def transpose(matrix): return matrix.T def predict(file_path: str): temp_file_path = create_temp_file(file_path) # predict_from_file print(f"temp_path: {temp_file_path}") temp_bash_file = create_bash_file(temp_file_path) print(f"temp_bash_file: {temp_bash_file}") os.system(f"bash {temp_bash_file}") # demo = gr.Interface( # predict, # # gr.Dataframe(type="numpy", datatype="number", row_count=5, col_count=3), # gr.File(type="filepath"), # "dict", # cache_examples=False # ) if __name__ == "__main__": file_path = "/home/xueyi/sim/Generalizable-HOI-Denoising/data/taco/source_data/20231104_017.pkl" predict(file_path=file_path)