import numpy as np import torch import torchvision.transforms as T from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer import gradio as gr # Constants for ImageNet preprocessing IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) # Build the image transform def build_transform(input_size): transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD) ]) return transform # Dynamic preprocessing def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height target_ratios = sorted( set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num), key=lambda x: x[0] * x[1] ) target_aspect_ratio = target_ratios[0] target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] resized_img = image.resize((target_width, target_height)) processed_images = [ resized_img.crop(( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size )) for i in range(blocks) ] if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images # Load image dynamically from user upload def load_image(image, input_size=448, max_num=12): transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values # Load the model and tokenizer path = 'OpenGVLab/InternVL2_5-78B' model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto" # Use device map for efficient memory handling ) tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) # Define the function for Gradio image interface def process_image(image): try: pixel_values = load_image(image, max_num=12).to(torch.bfloat16).cuda() generation_config = dict(max_new_tokens=1024, do_sample=True) question = '\nExtract text from the image, respond with only the extracted text.' response = model.chat(tokenizer, pixel_values, question, generation_config) return response except Exception as e: return f"Error: {str(e)}" # Define the function for text-based chatbot interface def chatbot(input_text, history=[]): try: generation_config = dict(max_new_tokens=1024, do_sample=True) response, updated_history = model.chat(tokenizer, None, input_text, generation_config, history=history, return_history=True) return response, updated_history except Exception as e: return f"Error: {str(e)}", history # Create Gradio Tabs with gr.Blocks() as demo: with gr.Tab("Image Processing"): gr.Markdown("Upload an image and get detailed responses using the InternVL model.") image_input = gr.Image(type="pil") image_output = gr.Textbox(label="Response") image_btn = gr.Button("Process") image_btn.click(process_image, inputs=image_input, outputs=image_output) with gr.Tab("Chatbot"): gr.Markdown("Chat with the model.") chatbot_input = gr.Textbox(label="Your Message") chatbot_output = gr.Textbox(label="Response") chatbot_history = gr.State([]) chatbot_btn = gr.Button("Send") chatbot_btn.click(chatbot, inputs=[chatbot_input, chatbot_history], outputs=[chatbot_output, chatbot_history]) # Launch the Gradio app if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)