Spaces:
Sleeping
Sleeping
File size: 6,857 Bytes
c1ee6a7 507dc5e 8621a57 c1ee6a7 507dc5e 8621a57 c1ee6a7 f4a4f9c 507dc5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import gradio as gr
import requests
from PIL import Image
from io import BytesIO
import os
import json
from dotenv import load_dotenv
import fitz # PyMuPDF
import arxiv
import tiktoken
from openai import OpenAI
import textwrap
from datetime import datetime
# Load environment variables from .env file
load_dotenv()
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
def download_and_extract_paper_info(arxiv_id, token_limit=120000, model="gpt-3.5-turbo"):
search = arxiv.Search(id_list=[arxiv_id])
paper = next(search.results())
title = paper.title
publish_date = paper.published.date()
pdf_url = f"https://arxiv.org/pdf/{arxiv_id}.pdf"
response = requests.get(pdf_url)
if response.status_code == 200:
pdf_content = response.content
doc = fitz.open(stream=pdf_content, filetype="pdf")
text = ""
encoding = tiktoken.encoding_for_model(model)
for page in doc:
page_text = page.get_text()
text += page_text
tokens = encoding.encode(text)
if len(tokens) > token_limit:
text = encoding.decode(tokens[:token_limit])
break
return {
"title": title,
"publish_date": publish_date,
"full_text": text
}
else:
print(f"Failed to download paper. Status code: {response.status_code}")
return None
def summarize_text(text):
prompt = f"""
You are getting the text version of an arxiv paper your goal is to provide a summary of the paper by providing bullet points which summarise the paper.
It should be exact three bullet points which summarise the paper. Return your response in JSON format where the keys are the bullet points and the values are the summaries of the bullet points as following:
{{
"bullet_point_1": "content",
"bullet_point_2": "content",
"bullet_point_3": "content"
}}
Here is the text of the paper:
{text}
"""
completion = openai_client.chat.completions.create(
model="gpt-4o-mini",
response_format={ "type": "json_object" },
messages=[
{"role": "user", "content": prompt}
],
temperature=0.0,
)
summary = completion.choices[0].message.content
return summary
def add_text_to_image(background_path, title, text_content, publish_date, output_path="output.jpg", scale_factor=2, offset=20):
with Image.open(background_path) as img:
width, height = img.size
background = img.resize((width * scale_factor, height * scale_factor), Image.LANCZOS)
draw = ImageDraw.Draw(background)
title_font = ImageFont.truetype("fonts/Inika-Regular.ttf", 35 * scale_factor)
content_font = ImageFont.truetype("fonts/Inika-Regular.ttf", 20 * scale_factor)
date_font = ImageFont.truetype("fonts/Inika-Regular.ttf", 20 * scale_factor)
arxiv_font = ImageFont.truetype("fonts/Larabieb.ttf", 50 * scale_factor)
margin = 50 * scale_factor
max_width = background.width - (2 * margin)
# Dynamically calculate the width for wrapping the title
wrapped_title = textwrap.wrap(title, width=int(max_width / (35 * scale_factor * 0.6)))
y_text = 50 * scale_factor
for line in wrapped_title:
bbox = title_font.getbbox(line)
line_width = bbox[2] - bbox[0]
line_height = bbox[3] - bbox[1]
x_text = (background.width - line_width) // 2
draw.text((x_text, y_text), line, font=title_font, fill=(0, 0, 0))
y_text += line_height + (10 * scale_factor)
bullet_points = json.loads(text_content)
total_height = sum(len(textwrap.wrap(value, width=90)) * (25 * scale_factor) + (20 * scale_factor) for value in bullet_points.values())
y = (background.height - total_height) // 2
bullet_width = content_font.getbbox("• ")[2]
max_content_width = max(max(content_font.getbbox(line)[2] for line in textwrap.wrap(value, width=90)) for value in bullet_points.values())
bullet_start_x = (background.width - max_content_width - bullet_width) // 2
for value in bullet_points.values():
wrapped_text = textwrap.wrap(value, width=90)
for i, line in enumerate(wrapped_text):
if i == 0:
draw.text((bullet_start_x, y), "•", font=content_font, fill=(0, 0, 0))
draw.text((bullet_start_x + bullet_width, y), line, font=content_font, fill=(0, 0, 0))
else:
draw.text((bullet_start_x + bullet_width, y + (25 * scale_factor * i)), line, font=content_font, fill=(0, 0, 0))
y += (25 * scale_factor * len(wrapped_text)) + (20 * scale_factor)
date_text = f"Published: {publish_date}"
date_bbox = date_font.getbbox(date_text)
date_height = date_bbox[3] - date_bbox[1]
draw.text((margin, background.height - margin - date_height - offset), date_text, font=date_font, fill=(0, 0, 0))
arxiv_text = "@arXivGPT"
arxiv_bbox = arxiv_font.getbbox(arxiv_text)
arxiv_width = arxiv_bbox[2] - arxiv_bbox[0]
arxiv_height = arxiv_bbox[3] - arxiv_bbox[1]
arxiv_x = background.width - margin - arxiv_width
arxiv_y = background.height - margin - arxiv_height - offset
pre_x_text = "@ar"
pre_x_width = arxiv_font.getbbox(pre_x_text)[2]
draw.text((arxiv_x, arxiv_y), pre_x_text, font=arxiv_font, fill=(0, 0, 0))
x_text = "X"
x_width = arxiv_font.getbbox(x_text)[2]
draw.text((arxiv_x + pre_x_width, arxiv_y), x_text, font=arxiv_font, fill="#B31B1B")
post_x_text = "ivGPT"
draw.text((arxiv_x + pre_x_width + x_width, arxiv_y), post_x_text, font=arxiv_font, fill=(0, 0, 0))
background.save(output_path, quality=95)
print(f"High-resolution image saved as {output_path}")
def create_image_from_url(arxiv_id, background_path="background.jpg", output_path="output.jpg"):
paper_info = download_and_extract_paper_info(arxiv_id)
if paper_info:
title = paper_info.get("title")
publish_date = paper_info.get("publish_date")
full_text = paper_info.get("full_text")
summary = summarize_text(full_text)
add_text_to_image(background_path, title, summary, publish_date, output_path)
return output_path
def fetch_arxiv_image(arxiv_link):
arxiv_id = arxiv_link.split('/')[-1]
output_path = create_image_from_url(arxiv_id)
return Image.open(output_path)
description_text = (
"It will only work with an arXiv link. Based on the arXiv paper, a summary of the paper is generated "
"and displayed in arXivGPT format (https://x.com/arXivGPT). Please input the arXiv link below."
)
demo = gr.Interface(
fn=fetch_arxiv_image,
inputs="text",
outputs="image",
allow_flagging="never",
description=description_text
)
demo.launch() |