Spaces:
Runtime error
Runtime error
import json | |
import pandas as pd | |
import yaml | |
from sklearn.metrics import cohen_kappa_score | |
import numpy as np | |
from datasets import load_dataset | |
from .envs import TOKEN | |
TYPES = ["number", "html", "number", "number", "number", "number"] | |
def read_json(file_path: str) -> list[dict]: | |
""" | |
Read a JSON/JSONL file and return its contents as a list of dictionaries. | |
Parameters: | |
file_path (str): The path to the JSON file. | |
Returns: | |
list[dict]: The contents of the JSON file as a list of dictionaries. | |
""" | |
try: | |
with open(file_path) as f: | |
data = [json.loads(x) for x in f] | |
return data | |
except json.decoder.JSONDecodeError: | |
with open(file_path) as f: | |
data = json.load(f) | |
return data | |
def pairwise_compare( | |
evaluator1_responses: list[dict], | |
evaluator2_responses: list[dict], | |
) -> tuple[float, float]: | |
""" | |
Compare pairwise evaluators. | |
Args: | |
evaluator1_responses: The responses from the first evaluator. | |
evaluator2_responses: The responses from the second evaluator. | |
Returns: | |
None | |
""" | |
assert len(evaluator1_responses) == len(evaluator2_responses) | |
evaluator1_winners = np.array([response["winner"] for response in evaluator1_responses]) | |
evaluator2_winners = np.array([response["winner"] for response in evaluator2_responses]) | |
acc = (evaluator1_winners == evaluator2_winners).mean().item() | |
agreement = cohen_kappa_score(evaluator1_winners, evaluator2_winners) | |
return acc, agreement | |
def pairwise_meta_eval(human_responses: list[dict], model_dir: str, model_dir_swap: str) -> dict[float]: | |
""" | |
Evaluate a pairwise evaluator. | |
Args: | |
human_responses: The responses from the human evaluator. | |
model_dir: The directory containing the model responses. | |
model_dir_swap: The directory containing the model responses with swapped inputs. | |
Returns: | |
dict[float]: The accuracy and agreement. | |
""" | |
model_responses = read_json(model_dir) | |
model_responses_swap = read_json(model_dir_swap) | |
acc, agr = pairwise_compare(human_responses, model_responses) | |
swap_acc, swap_agr = pairwise_compare( | |
human_responses, | |
model_responses_swap, | |
) | |
acc = (acc + swap_acc) / 2 | |
agr = (agr + swap_agr) / 2 | |
models_acc, models_agr = pairwise_compare( | |
model_responses, | |
model_responses_swap, | |
) | |
return acc, agr, models_acc, models_agr | |
def load_leaderboard() -> pd.DataFrame: | |
"""Loads the leaderboard from the file system""" | |
with open("./data/models.yaml") as fp: | |
models = yaml.safe_load(fp) | |
human_responses = load_dataset("salesforce/instrusum", "human_eval_pairwise", token=TOKEN)["data"] | |
human_responses = [x for x in human_responses] | |
predictions = {k: [] for k in ["Model", "Accuracy", "Agreement", "Self-Accuracy", "Self-Agreement"]} | |
for model in models: | |
fdir = model["fdir"] | |
acc, agr, models_acc, models_agr = pairwise_meta_eval( | |
human_responses, f"./predictions/{fdir}.jsonl", f"./predictions/{fdir}_swap.jsonl" | |
) | |
# predictions["Model"].append(model["name"]) | |
# predictions["Model"].append(f"[{model['name']}]({model['url']})") | |
link = model['url'] | |
model_name = model['name'] | |
output = f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' | |
predictions["Model"].append(output) | |
predictions["Accuracy"].append(acc) | |
predictions["Agreement"].append(agr) | |
predictions["Self-Accuracy"].append(models_acc) | |
predictions["Self-Agreement"].append(models_agr) | |
df = pd.DataFrame(predictions).sort_values(by="Agreement", ascending=False).round(decimals=3) | |
df.reset_index(drop=True, inplace=True) | |
df[' '] = pd.Series(range(1, len(df) + 1)) | |
columns = [' '] + [col for col in df.columns if col != ' '] | |
df = df[columns] | |
return df | |