File size: 6,694 Bytes
4d0d76c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
609c11f
 
4d0d76c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4397b2
4d0d76c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab3b5e0
4d0d76c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab3b5e0
4d0d76c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
import torch.onnx
from transformer import Transformer
import torch
from huggingface_hub import hf_hub_download
import torch
import numpy as np
import gradio as gr


# Generated this by filtering Appendix code
START_TOKEN = '<START>'
PADDING_TOKEN = '<PADDING>'
END_TOKEN = '<END>'


english_vocabulary = [START_TOKEN, ' ', '!', '"', '#', '$', '%', '&', "'", '(', ')', '*', '+', ',', '-', '.', '/', 
                        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
                        ':', '<', '=', '>', '?', '@',
                        '[', '\\', ']', '^', '_', '`', 
                        'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l',
                        'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 
                        'y', 'z', 
                        '{', '|', '}', '~', PADDING_TOKEN, END_TOKEN]


gujarati_vocabulary = [
    START_TOKEN, ' ', '!', '"', '#', '$', '%', '&', "'", '(', ')', '*', '+', ',', '-', '.', '/', 
    '૦', '૧', '૨', '૩', '૪', '૫', '૬', '૭', '૮', '૯',
    ':', '<', '=', '>', '?', '@', '[', '\\', ']', '^', '_', '`', 
    'અ', 'આ', 'ઇ', 'ઈ', 'ઉ', 'ઊ', 'ઋ', 'એ', 'ઐ', 'ઓ', 'ઔ', 
    'ક', 'ખ', 'ગ', 'ઘ', 'ઙ', 'ચ', 'છ', 'જ', 'ઝ', 'ઞ', 
    'ટ', 'ઠ', 'ડ', 'ઢ', 'ણ', 'ત', 'થ', 'દ', 'ધ', 'ન', 
    'પ', 'ફ', 'બ', 'ભ', 'મ', 'ય', 'ર', 'લ', 'વ', 'શ', 
    'ષ', 'સ', 'હ', 'ળ', 'ક્ષ', 'જ્ઞ', 'ં', 'ઃ', 'ઁ', 'ા', 
    'િ', 'ી', 'ુ', 'ૂ', 'ે', 'ૈ', 'ો', 'ૌ', '્', 'ૐ', 
    '{', '|', '}', '~', PADDING_TOKEN, END_TOKEN
]

index_to_gujarati = {k:v for k,v in enumerate(gujarati_vocabulary)}
gujarati_to_index = {v:k for k,v in enumerate(gujarati_vocabulary)}
index_to_english = {k:v for k,v in enumerate(english_vocabulary)}
english_to_index = {v:k for k,v in enumerate(english_vocabulary)}

d_model = 512 
# batch_size = 64
ffn_hidden = 2048
num_heads = 8
drop_prob = 0.1
num_layers = 6
max_sequence_length = 200
kn_vocab_size = len(gujarati_vocabulary)
# device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
device =  torch.device('cpu')

transformer = Transformer(d_model, 
                          ffn_hidden,
                          num_heads, 
                          drop_prob, 
                          num_layers, 
                          max_sequence_length,
                          kn_vocab_size,
                          english_to_index,
                          gujarati_to_index,
                          START_TOKEN, 
                          END_TOKEN, 
                          PADDING_TOKEN)

model_file = hf_hub_download(repo_id="yashAI007/English_to_Gujarati_Translation", filename="model.pth")
model = torch.load(model_file,map_location='cpu')
transformer.load_state_dict(model['model_state_dict'])
transformer.to(device)
transformer.eval()


NEG_INFTY = -1e9

def create_masks(eng_batch, kn_batch):
    num_sentences = len(eng_batch)
    look_ahead_mask = torch.full([max_sequence_length, max_sequence_length] , True)
    look_ahead_mask = torch.triu(look_ahead_mask, diagonal=1)
    encoder_padding_mask = torch.full([num_sentences, max_sequence_length, max_sequence_length] , False)
    decoder_padding_mask_self_attention = torch.full([num_sentences, max_sequence_length, max_sequence_length] , False)
    decoder_padding_mask_cross_attention = torch.full([num_sentences, max_sequence_length, max_sequence_length] , False)

    for idx in range(num_sentences):
      eng_sentence_length, kn_sentence_length = len(eng_batch[idx]), len(kn_batch[idx])
      eng_chars_to_padding_mask = np.arange(eng_sentence_length + 1, max_sequence_length)
      kn_chars_to_padding_mask = np.arange(kn_sentence_length + 1, max_sequence_length)
      encoder_padding_mask[idx, :, eng_chars_to_padding_mask] = True
      encoder_padding_mask[idx, eng_chars_to_padding_mask, :] = True
      decoder_padding_mask_self_attention[idx, :, kn_chars_to_padding_mask] = True
      decoder_padding_mask_self_attention[idx, kn_chars_to_padding_mask, :] = True
      decoder_padding_mask_cross_attention[idx, :, eng_chars_to_padding_mask] = True
      decoder_padding_mask_cross_attention[idx, kn_chars_to_padding_mask, :] = True

    encoder_self_attention_mask = torch.where(encoder_padding_mask, NEG_INFTY, 0)
    decoder_self_attention_mask =  torch.where(look_ahead_mask + decoder_padding_mask_self_attention, NEG_INFTY, 0)
    decoder_cross_attention_mask = torch.where(decoder_padding_mask_cross_attention, NEG_INFTY, 0)
    return encoder_self_attention_mask, decoder_self_attention_mask, decoder_cross_attention_mask

transformer.eval()
def translate(eng_sentence):
  print("English Sentence:",eng_sentence)
  eng_sentence = (eng_sentence.lower(),)
  kn_sentence = ("",)
  for word_counter in range(max_sequence_length):
    encoder_self_attention_mask, decoder_self_attention_mask, decoder_cross_attention_mask= create_masks(eng_sentence, kn_sentence)
    predictions = transformer(eng_sentence,
                              kn_sentence,
                              encoder_self_attention_mask.to(device), 
                              decoder_self_attention_mask.to(device), 
                              decoder_cross_attention_mask.to(device),
                              enc_start_token=False,
                              enc_end_token=False,
                              dec_start_token=True,
                              dec_end_token=False)
    next_token_prob_distribution = predictions[0][word_counter]
    next_token_index = torch.argmax(next_token_prob_distribution).item()
    next_token = index_to_gujarati[next_token_index]
    kn_sentence = (kn_sentence[0] + next_token, )
    if next_token == END_TOKEN:
      break
  print("Gujarati Sentence:",kn_sentence[0][:-5],'\n')
  return kn_sentence[0][:-5]

examples = [
    ["Hello, how are you?"],
    ["What is your name?"],
    ["I love programming."],
    ["This is a beautiful day."],
    ["Can you help me with this?"],
    ["What time is it?"],
    ["I am learning data science."],
    ["Where is the nearest bus stop?"],
    ["I enjoy reading books."],
    ["Thank you for your help."]
]

description = "This tool translates English sentences into Gujarati. Please enter your text above to get started!"

iface = gr.Interface(fn=translate, 
                     inputs="text",
                     outputs="text",
                     title="English to Gujarati Translation",
                     examples=examples,
                     description=description,
                     )

if __name__ == "__main__":
    iface.launch()