import gradio as gr from huggingface_hub import InferenceClient # Initialize the Hugging Face Inference Client client = InferenceClient() # Function to interact with the Qwen2.5-32B model and analyze code for compliance def analyze_compliance(code, compliance_standard): prompt = f"Analyze the following code for {compliance_standard} compliance and suggest modifications or refactoring to meet the guidelines:\n\n{code}" messages = [ {"role": "user", "content": prompt} ] # Create a stream to receive generated content stream = client.chat.completions.create( model="Qwen/Qwen2.5-Coder-32B-Instruct", messages=messages, temperature=0.5, max_tokens=1024, top_p=0.7, stream=True ) # Collect the output from the stream compliance_suggestions = "" for chunk in stream: compliance_suggestions += chunk.choices[0].delta.content return compliance_suggestions # Create Gradio interface with gr.Blocks() as app: gr.Markdown("## Legal and Compliance Code Advisor") gr.Markdown("Analyze your code for legal compliance standards (e.g., GDPR, HIPAA) and receive modification suggestions.") with gr.Row(): code_input = gr.Textbox(lines=10, label="Code Snippet", placeholder="Enter your code here") compliance_standard = gr.Dropdown( choices=["GDPR", "HIPAA", "PCI-DSS", "SOC 2", "ISO 27001"], label="Compliance Standard", value="GDPR" ) output_text = gr.Textbox(label="Compliance Suggestions", placeholder="Compliance suggestions will appear here...") analyze_button = gr.Button("Analyze Compliance") analyze_button.click(fn=analyze_compliance, inputs=[code_input, compliance_standard], outputs=output_text) # Run the Gradio app app.launch()