Spaces:
Runtime error
Runtime error
few updates
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-1b3", use_cache=True)
|
5 |
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-1b3")
|
@@ -9,21 +9,22 @@ def post_process_sentence(input_sentence, generated_sentence):
|
|
9 |
if "\n" not in new_sentence:
|
10 |
return generated_sentence.replace(" ", " ") + "\n- "
|
11 |
else:
|
12 |
-
return (
|
13 |
|
14 |
-
def generate_single(model, tokenizer, input_sentence, max_length=50, top_k=0, temperature=0.7):
|
|
|
15 |
input_ids = tokenizer.encode(input_sentence, return_tensors="pt")
|
16 |
output = model.generate(
|
17 |
-
input_ids, do_sample=
|
18 |
max_length=len(input_sentence)+max_length,
|
19 |
top_k=top_k,
|
20 |
-
temperature=temperature
|
21 |
)
|
22 |
generated_sentence = tokenizer.decode(output[0], skip_special_tokens=True)
|
23 |
return post_process_sentence(input_sentence, generated_sentence)
|
24 |
|
25 |
-
def question_bloom(input_sentence, max_length, temperature):
|
26 |
-
post_processed_output = generate_single(model, tokenizer, input_sentence, temperature=temperature, max_length=max_length)
|
27 |
return post_processed_output.split("\n-")[-2]
|
28 |
|
29 |
gr.Interface(
|
@@ -44,6 +45,14 @@ gr.Interface(
|
|
44 |
default=0.6,
|
45 |
label="Temperature",
|
46 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
],
|
48 |
outputs=gr.Textbox(label="Predicted sentence", lines=10),
|
49 |
).launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
|
3 |
|
4 |
model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-1b3", use_cache=True)
|
5 |
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-1b3")
|
|
|
9 |
if "\n" not in new_sentence:
|
10 |
return generated_sentence.replace(" ", " ") + "\n- "
|
11 |
else:
|
12 |
+
return (new_sentence.split("\n")[0]).replace(" ", " ") + "\n- "
|
13 |
|
14 |
+
def generate_single(model, tokenizer, input_sentence, max_length=50, top_k=0, temperature=0.7, do_sample=True, seed=42):
|
15 |
+
set_seed(seed)
|
16 |
input_ids = tokenizer.encode(input_sentence, return_tensors="pt")
|
17 |
output = model.generate(
|
18 |
+
input_ids, do_sample=do_sample,
|
19 |
max_length=len(input_sentence)+max_length,
|
20 |
top_k=top_k,
|
21 |
+
temperature=temperature,
|
22 |
)
|
23 |
generated_sentence = tokenizer.decode(output[0], skip_special_tokens=True)
|
24 |
return post_process_sentence(input_sentence, generated_sentence)
|
25 |
|
26 |
+
def question_bloom(input_sentence, max_length, temperature, do_sample=True, seed=42):
|
27 |
+
post_processed_output = generate_single(model, tokenizer, input_sentence, temperature=temperature, max_length=max_length, do_sample=do_sample, seed=seed)
|
28 |
return post_processed_output.split("\n-")[-2]
|
29 |
|
30 |
gr.Interface(
|
|
|
45 |
default=0.6,
|
46 |
label="Temperature",
|
47 |
),
|
48 |
+
gr.inputs.Checkbox(True, label="Do Sample"),
|
49 |
+
gr.inputs.Slider(
|
50 |
+
minimum=0,
|
51 |
+
maximum=256,
|
52 |
+
step=1,
|
53 |
+
default=42,
|
54 |
+
label="Random seed for generation",
|
55 |
+
),
|
56 |
],
|
57 |
outputs=gr.Textbox(label="Predicted sentence", lines=10),
|
58 |
).launch()
|