File size: 4,657 Bytes
02ba63a
 
 
 
 
 
19d010a
02ba63a
 
 
 
19d010a
02ba63a
 
 
 
 
19d010a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02ba63a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d010a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
import torchvision
from torchvision import transforms
import random
from PIL import Image
import os
import pandas as pd

from utils import RandomAffineAndRetMat

def load_filenames(data_dir):
  # 画像の拡張子のみ
  img_exts = ['.jpg', '.jpeg', '.png', '.bmp', '.ppm', '.pgm', '.tif', '.tiff']
  filenames = [f for f in os.listdir(data_dir) if os.path.splitext(f)[1].lower() in img_exts]

  return filenames

def load_keypoints(label_path):
  label_data = pd.read_json(label_path)
  label_data = label_data.sort_index()
  tmp_points = []

  for o in label_data.data[0:1000]:
    tmps = []
    for i in range(60):
      tmps.append(o['points'][str(i)]['x'])
      tmps.append(o['points'][str(i)]['y'])
    tmp_points.append(tmps) # datanum

  df_points = pd.DataFrame(tmp_points)
  df_points = df_points.iloc[:,[
      *list(range(0,16*2+1,4)), *list(range(1,16*2+2,4)),
      *list(range(27*2,36*2+1,4)), *list(range(27*2+1,36*2+2,4)),
      *list(range(37*2,46*2+1,4)), *list(range(37*2+1,46*2+2,4)),
  #     49*2, 49*2+1,
  #     *list(range(50*2,55*2+1,4)), *list(range(50*2+1,55*2+2,4)),
      28*2, 28*2+1,
      30*2, 30*2+1,
      34*2, 34*2+1,
      38*2, 38*2+1,
      40*2, 40*2+1,
      44*2, 44*2+1,
  ]]
  df_points = df_points.sort_index(axis=1)
  df_points.columns = list(range(len(df_points.columns)))
  # df_points[0:500].iloc[0]

  return df_points

class MyDataset:
  def __init__(self, X, valid=False, img_dir='resources/trainB/', img_size=256):
    self.X = X
    self.valid = valid
    self.img_dir = img_dir
    self.img_size = img_size

  def __len__(self):
    return len(self.X)

  def __getitem__(self, index):
      # 画像を読み込んでトランスフォームを適用
    f = self.img_dir + self.X[index]
    original_X = Image.open(f)
    trans = [
      transforms.ToTensor(),
      # transforms.Normalize(mean=means, std=stds),
      transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),

      transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.2, hue=0.15),
      transforms.RandomGrayscale(0.3),
    ]
    transform = transforms.Compose(trans)
    xlist = []
    matlist = []
    is_flip = random.randint(0, 1) # 同じ画像はフリップ
    for i in range(2):
      af = RandomAffineAndRetMat(
        degrees=[-30, 30],
        translate=(0.1, 0.1), scale=(0.8, 1.2),
        # fill=(random.random(), random.random(), random.random()),
        fill=(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)),
        shear=[-10, 10],
        interpolation=torchvision.transforms.InterpolationMode.BILINEAR,
      )
      X, affine_matrix = af(transforms.Resize(self.img_size)(original_X))

      # randomflip
      if is_flip == 1:
        X = transforms.RandomHorizontalFlip(1.)(X)
        flip_matrix = torch.tensor([[-1., 0., 0.],
                                     [0., 1., 0.],
                                     [0., 0., 1.]])
        affine_matrix = torch.matmul(flip_matrix, affine_matrix)

      xlist.append(transform(X))
      matlist.append(affine_matrix)

    X = torch.stack(xlist)
    mat = torch.stack(matlist)
    return X, mat, f
  
class ImageKeypointDataset:
  def __init__(self, X, y, valid=False, img_dir='resources/trainB/', img_size=256):
    self.X = X
    self.y = y
    self.valid = valid
    self.img_dir = img_dir
    self.img_size = img_size
    # if not valid:
    trans = [
              transforms.Resize(self.img_size),
              transforms.ToTensor(),
              # transforms.Normalize(mean=means, std=stds),
              transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
              # transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1)
    ]
    self.trans = transforms.Compose(trans)

  def __len__(self):
    return len(self.X)

  def __getitem__(self, index):
    if type(index) is slice:
      if index.step is None:
        return (torch.stack([self.get_one_X(i) for i in range(index.start, index.stop)]),
                torch.stack([self.get_one_y(i) for i in range(index.start, index.stop)]))
      else:
        return (torch.stack([self.get_one_X(i) for i in range(index.start, index.stop, index.step)]),
                torch.stack([self.get_one_y(i) for i in range(index.start, index.stop, index.step)]))
    if type(index) is int:
      return self.get_one_X(index), self.get_one_y(index)
  
  def get_one_X(self, index):
    f = self.img_dir + self.X[index]
    X = Image.open(f)    
    X = self.trans(X)
    return X

  def get_one_y(self, index):
    y = self.y.iloc[index].copy()
    y = torch.tensor(y)
    y = y.float()
    y = y.reshape(25,2)
    return y