File size: 7,064 Bytes
02ba63a
 
 
 
 
 
 
 
 
 
c6793c3
02ba63a
19d010a
 
 
 
8ecd333
19d010a
26ba1d3
02ba63a
 
 
19d010a
 
 
 
 
 
 
 
 
 
 
02ba63a
 
00e1057
50f5011
02ba63a
26ba1d3
02ba63a
 
19d010a
02ba63a
 
19d010a
02ba63a
 
 
 
 
19d010a
02ba63a
 
 
26ba1d3
19d010a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02ba63a
0c6ebb1
 
 
 
d78ce10
 
 
 
 
5c8862b
0c6ebb1
 
 
 
 
fddf24a
0c6ebb1
 
 
cc0703f
fddf24a
0c6ebb1
02ba63a
8ecd333
c6793c3
8ecd333
 
 
 
 
 
 
 
c6793c3
 
 
 
 
 
 
8ecd333
8d302a0
8ecd333
 
 
 
 
00e1057
8d302a0
8ecd333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23281d5
02ba63a
01a01d7
 
 
 
 
 
 
 
 
19d010a
 
c6793c3
 
 
 
 
2e99060
c6793c3
19d010a
2e99060
 
c6793c3
2e99060
 
 
 
 
19d010a
2e99060
19d010a
2e99060
 
 
 
 
 
 
 
 
 
ff3dcda
02ba63a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from model_module import AutoencoderModule
import numpy as np
from PIL import Image
import base64
from io import BytesIO
import os

import dataset
from dataset import MyDataset, ImageKeypointDataset, load_filenames, load_keypoints
import utils

import spaces

def load_model(model_path, feature_dim):
    model = AutoencoderModule(feature_dim=feature_dim)
    state_dict = torch.load(model_path)
    
    if "state_dict" in state_dict:
        model.load_state_dict(state_dict['state_dict'])
        model.eval()
    else:
        # state_dict のキーを修正
        new_state_dict = {}
        for key in state_dict:
            new_key = "model." + key
            new_state_dict[new_key] = state_dict[key]
        model.load_state_dict(new_state_dict)
        model.eval()
    
    model.to(device)
    print(f"{model_path} loaded successfully.")
    return model

def load_data(img_dir="resources/trainB/", image_size=112, batch_size=256):
    filenames = load_filenames(img_dir)
    train_X = filenames[:1000]

    train_ds = MyDataset(train_X, img_dir=img_dir, img_size=image_size)
    
    train_loader = DataLoader(train_ds, batch_size=batch_size, shuffle=True, num_workers=0)
    
    iterator = iter(train_loader)
    x, _, _ = next(iterator)
    x = x.to(device)
    x = x[:,0].to(device)
    
    print("Data loaded successfully.")
    return x

def load_keypoints(img_dir="resources/trainB/", image_size=112, batch_size=32):
    filenames = load_filenames(img_dir)
    train_X = filenames[:1000]
    keypoints = dataset.load_keypoints('resources/DataList.json')

    image_points_ds = ImageKeypointDataset(train_X, keypoints, img_dir='resources/trainB/', img_size=image_size)

    image_points_loader = DataLoader(image_points_ds, batch_size=batch_size, shuffle=False)

    iterator = iter(image_points_loader)
    test_imgs, points = next(iterator)
    test_imgs = test_imgs.to(device)
    points = points.to(device)*(image_size)
    
    print("Keypoints loaded successfully.")
    return test_imgs, points

image_size = 112
batch_size = 32
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

models_info = [
    {"name": "autoencoder-epoch=49-train_loss=1.01.ckpt", "feature_dim": 64},
    {"name": "autoencoder-epoch=29-train_loss=1.01.ckpt", "feature_dim": 64},
    {"name": "autoencoder-epoch=09-train_loss=1.00.ckpt", "feature_dim": 64},  
    {"name": "ae_model_tf_2024-03-05_00-35-21.pth", "feature_dim": 32},
]
models = []
for model_info in models_info:
    model_name = model_info["name"]
    feature_dim = model_info["feature_dim"]
    model_path = f"checkpoints/{model_name}"
    models.append(load_model(model_path, feature_dim))

x = load_data()
test_imgs, points = load_keypoints()
mean_vector_list = []
model_index = 0

# ヒートマップの生成関数
@spaces.GPU
def get_heatmaps(model_info, source_num, x_coords, y_coords, uploaded_image):
    if type(uploaded_image) == str:
        uploaded_image = Image.open(uploaded_image)
    if type(source_num) == str:
        source_num = int(source_num)
    if type(x_coords) == str:
        x_coords = int(x_coords)
    if type(y_coords) == str:
        y_coords = int(y_coords)
        
    if type(model_info) == str:
        model_info = eval(model_info)
    model_index = models_info.index(model_info)

    mean_vector_list = np.load(f"resources/mean_vector_list_{model_info['name']}.npy", allow_pickle=True)
    mean_vector_list = torch.tensor(mean_vector_list).to(device)

    dec5, _ = models[model_index](x)
    feature_map = dec5
    # アップロード画像の前処理
    if uploaded_image is not None:
        uploaded_image = utils.preprocess_uploaded_image(uploaded_image['composite'], image_size)
    else:
        uploaded_image = torch.zeros(1, 3, image_size, image_size).to(device)
    target_feature_map, _ = models[model_index](uploaded_image)
    img = torch.cat((x, uploaded_image))
    feature_map = torch.cat((feature_map, target_feature_map))

    source_map, target_map, blended_source, blended_target = utils.get_heatmaps(img, feature_map, source_num, x_coords, y_coords, uploaded_image)
    keypoint_maps, blended_tensors = utils.get_keypoint_heatmaps(target_feature_map, mean_vector_list, points.size(1), uploaded_image)

    # Matplotlibでプロットして画像として保存
    fig, axs = plt.subplots(2, 3, figsize=(10, 6))
    axs[0, 0].imshow(source_map, cmap='hot')
    axs[0, 0].set_title("Source Map")
    axs[0, 1].imshow(target_map, cmap='hot')
    axs[0, 1].set_title("Target Map")
    axs[0, 2].imshow(keypoint_maps[0], cmap='hot')
    axs[0, 2].set_title("Keypoint Map")
    axs[1, 0].imshow(blended_source.permute(1, 2, 0))
    axs[1, 0].set_title("Blended Source")
    axs[1, 1].imshow(blended_target.permute(1, 2, 0))
    axs[1, 1].set_title("Blended Target")
    axs[1, 2].imshow(blended_tensors[0].permute(1, 2, 0))
    axs[1, 2].set_title("Blended Keypoint")
    for ax in axs.flat:
        ax.axis('off')
    
    plt.tight_layout()
    plt.close(fig)
    return fig

with gr.Blocks() as demo:
    # title
    gr.Markdown("# TripletGeoEncoder Feature Map Visualization")
    # description
    gr.Markdown("This demo visualizes the feature maps of a TripletGeoEncoder trained on the CelebA dataset using self-supervised learning without annotations from only 1000 images. "
                  "The feature maps are visualized as heatmaps, where the source map shows the distance of each pixel in the source image to the selected pixel, and the target map shows the distance of each pixel in the target image to the selected pixel. "

                "The blended source and target images show the source and target images with the source and target maps overlaid, respectively. "

                "For further information, please contact me on X (formerly Twitter): @Yeq6X.")
    
    gr.Markdown("## Heatmap Visualization")
 
    model_info = gr.Dropdown(
        choices=[str(model_info) for model_info in models_info],
        container=False
    )
    input_image = gr.ImageEditor(label="Cropped Image", elem_id="input_image", crop_size=(112, 112), show_fullscreen_button=True)
    output_plot = gr.Plot(value=None, elem_id="output_plot", show_label=False)   
    inference = gr.Interface(
        get_heatmaps,
        inputs=[
            model_info,
            gr.Slider(0, batch_size - 1, step=1, label="Source Image Index"),
            gr.Slider(0, image_size - 1, step=1, value=image_size // 2, label="X Coordinate"),
            gr.Slider(0, image_size - 1, step=1, value=image_size // 2, label="Y Coordinate"),
            input_image
        ],
        outputs=output_plot,
        live=True,
        flagging_mode="never"
    )
    # examples
    gr.Markdown("# Examples")
    gr.Examples(
        examples=[
        ["resources/examples/2488.jpg"],
        ["resources/examples/2899.jpg"]
    ],
        inputs=[input_image],
    )

    demo.launch()