yeq6x's picture
keypoints
19d010a
raw
history blame
4.66 kB
import torch
import torchvision
from torchvision import transforms
import random
from PIL import Image
import os
import pandas as pd
from utils import RandomAffineAndRetMat
def load_filenames(data_dir):
# 画像の拡張子のみ
img_exts = ['.jpg', '.jpeg', '.png', '.bmp', '.ppm', '.pgm', '.tif', '.tiff']
filenames = [f for f in os.listdir(data_dir) if os.path.splitext(f)[1].lower() in img_exts]
return filenames
def load_keypoints(label_path):
label_data = pd.read_json(label_path)
label_data = label_data.sort_index()
tmp_points = []
for o in label_data.data[0:1000]:
tmps = []
for i in range(60):
tmps.append(o['points'][str(i)]['x'])
tmps.append(o['points'][str(i)]['y'])
tmp_points.append(tmps) # datanum
df_points = pd.DataFrame(tmp_points)
df_points = df_points.iloc[:,[
*list(range(0,16*2+1,4)), *list(range(1,16*2+2,4)),
*list(range(27*2,36*2+1,4)), *list(range(27*2+1,36*2+2,4)),
*list(range(37*2,46*2+1,4)), *list(range(37*2+1,46*2+2,4)),
# 49*2, 49*2+1,
# *list(range(50*2,55*2+1,4)), *list(range(50*2+1,55*2+2,4)),
28*2, 28*2+1,
30*2, 30*2+1,
34*2, 34*2+1,
38*2, 38*2+1,
40*2, 40*2+1,
44*2, 44*2+1,
]]
df_points = df_points.sort_index(axis=1)
df_points.columns = list(range(len(df_points.columns)))
# df_points[0:500].iloc[0]
return df_points
class MyDataset:
def __init__(self, X, valid=False, img_dir='resources/trainB/', img_size=256):
self.X = X
self.valid = valid
self.img_dir = img_dir
self.img_size = img_size
def __len__(self):
return len(self.X)
def __getitem__(self, index):
# 画像を読み込んでトランスフォームを適用
f = self.img_dir + self.X[index]
original_X = Image.open(f)
trans = [
transforms.ToTensor(),
# transforms.Normalize(mean=means, std=stds),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.2, hue=0.15),
transforms.RandomGrayscale(0.3),
]
transform = transforms.Compose(trans)
xlist = []
matlist = []
is_flip = random.randint(0, 1) # 同じ画像はフリップ
for i in range(2):
af = RandomAffineAndRetMat(
degrees=[-30, 30],
translate=(0.1, 0.1), scale=(0.8, 1.2),
# fill=(random.random(), random.random(), random.random()),
fill=(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)),
shear=[-10, 10],
interpolation=torchvision.transforms.InterpolationMode.BILINEAR,
)
X, affine_matrix = af(transforms.Resize(self.img_size)(original_X))
# randomflip
if is_flip == 1:
X = transforms.RandomHorizontalFlip(1.)(X)
flip_matrix = torch.tensor([[-1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
affine_matrix = torch.matmul(flip_matrix, affine_matrix)
xlist.append(transform(X))
matlist.append(affine_matrix)
X = torch.stack(xlist)
mat = torch.stack(matlist)
return X, mat, f
class ImageKeypointDataset:
def __init__(self, X, y, valid=False, img_dir='resources/trainB/', img_size=256):
self.X = X
self.y = y
self.valid = valid
self.img_dir = img_dir
self.img_size = img_size
# if not valid:
trans = [
transforms.Resize(self.img_size),
transforms.ToTensor(),
# transforms.Normalize(mean=means, std=stds),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
# transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1)
]
self.trans = transforms.Compose(trans)
def __len__(self):
return len(self.X)
def __getitem__(self, index):
if type(index) is slice:
if index.step is None:
return (torch.stack([self.get_one_X(i) for i in range(index.start, index.stop)]),
torch.stack([self.get_one_y(i) for i in range(index.start, index.stop)]))
else:
return (torch.stack([self.get_one_X(i) for i in range(index.start, index.stop, index.step)]),
torch.stack([self.get_one_y(i) for i in range(index.start, index.stop, index.step)]))
if type(index) is int:
return self.get_one_X(index), self.get_one_y(index)
def get_one_X(self, index):
f = self.img_dir + self.X[index]
X = Image.open(f)
X = self.trans(X)
return X
def get_one_y(self, index):
y = self.y.iloc[index].copy()
y = torch.tensor(y)
y = y.float()
y = y.reshape(25,2)
return y