File size: 7,729 Bytes
e3af00f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os.path
import random
from glob import glob
from pathlib import Path

import cv2
import numpy as np
import pandas as pd
from torch.utils.data import Dataset

from stf_alternative.s2f_dir.src.mask_history import calc_poly


def frame_id(fname):
    return int(os.path.basename(fname).split("_")[0])


def masking(im, pts):
    im = cv2.fillPoly(im, [pts], (128, 128, 128))
    return im


accepted_format = set([".webp", ".png", ".jpg"])


class LipGanImage(Dataset):
    def __init__(self, args, path, num_skip_frames=0):
        self.args = args
        paths = sorted(
            [it for it in glob(f"{path}/*") if Path(it).suffix in accepted_format]
        )
        self.paths = paths[num_skip_frames:] + paths[:num_skip_frames]

        self.mask_ver = (
            list(args.mask_ver)
            if isinstance(args.mask_ver, (list, tuple))
            else [args.mask_ver]
        )
        self.keying_mask_ver = (
            args.keying_mask_ver if "keying_mask_ver" in args else None
        )
        self.smoothing_mask = True if args.smoothing_mask else False
        self.num_ips = args.num_ips

        df = pd.read_pickle(path / "df_fan.pickle")
        self.df = df.set_index("frame_idx")["cropped_pts2d"]

    def __getitem__(self, idx):
        img_name = Path(self.paths[idx])
        gt_fname = img_name.name
        dir_name = img_name.parent

        sidx = frame_id(gt_fname)
        img_gt = cv2.imread(str(img_name), cv2.IMREAD_UNCHANGED)

        masked = img_gt[:, :, :3].copy()
        img_ip = masked * 2.0 / 255.0 - 1.0

        if self.df[sidx] is None:
            # snow : 인사하는 템플릿이 들어오면서 preds 가 없는 경우가 생겼다.
            # 이런 경우, 마스크 없이 원래 이미지를 그대로 준다.
            mask = np.zeros_like(masked, dtype=np.uint8)
        else:
            mask_ver = random.choice(self.mask_ver)
            pts = calc_poly[mask_ver](self.df[sidx], masked.shape[0], randomness=False)
            if self.keying_mask_ver is not None:
                keying_pts = calc_poly[self.keying_mask_ver](
                    self.df[sidx], masked.shape[0], randomness=False
                )
            else:
                keying_pts = pts

            if self.smoothing_mask:
                pts = smoothing_mask(pts)
            masked = masking(masked, pts)
            mask = np.zeros_like(masked, dtype=np.uint8)
            mask = masking(mask, keying_pts)

        img_ips = [img_ip for _ in range(self.num_ips)]
        ips = np.concatenate([masked * 2.0 / 255.0 - 1.0] + img_ips, axis=2)

        if img_gt.shape[2] == 3:
            alpha = np.zeros_like(img_gt[:, :, :1])
            alpha.fill(255)
            img_gt = np.concatenate([img_gt, alpha], axis=2)

        return {
            "ips": ips.astype(np.float32),
            "mask": mask,
            "img_gt_with_alpha": img_gt,
            "filename": str(img_name),
        }

    def __len__(self):
        return len(self.paths)


class LipGanRemoteImage(Dataset):
    def __init__(self, args, path, num_skip_frames=0):
        self.args = args
        paths = sorted(
            [it for it in glob(f"{path}/*") if Path(it).suffix in accepted_format]
        )
        self.paths = paths[num_skip_frames:] + paths[:num_skip_frames]
        self.num_skip_frames = num_skip_frames

        self.mask_ver = (
            list(args.mask_ver)
            if isinstance(args.mask_ver, (list, tuple))
            else [args.mask_ver]
        )
        self.keying_mask_ver = (
            args.keying_mask_ver if "keying_mask_ver" in args else None
        )
        self.smoothing_mask = True if args.smoothing_mask else False
        self.num_ips = args.num_ips

        df = pd.read_pickle(path / "df_fan.pickle")
        self.df = df.set_index("frame_idx")["cropped_pts2d"]

    def __getitem__(self, idx):
        img_name = Path(self.paths[idx])
        gt_fname = img_name.name
        sidx = frame_id(gt_fname)
        img_gt = cv2.imread(str(img_name), cv2.IMREAD_UNCHANGED)

        masked = img_gt[:, :, :3].copy()
        img_ip = img_gt[:, :, :3].copy()

        if self.df[sidx] is None:
            mask = np.zeros_like(masked, dtype=np.uint8)
        else:
            mask_ver = random.choice(self.mask_ver)
            pts = calc_poly[mask_ver](self.df[sidx], masked.shape[0], randomness=False)
            if self.keying_mask_ver is not None:
                keying_pts = calc_poly[self.keying_mask_ver](
                    self.df[sidx], masked.shape[0], randomness=False
                )
            else:
                keying_pts = pts

            if self.smoothing_mask:
                pts = smoothing_mask(pts)
            masked = masking(masked, pts)
            mask = np.zeros_like(masked, dtype=np.uint8)
            mask = masking(mask, keying_pts)

        img_ips = [img_ip for _ in range(self.num_ips)]
        ips = np.concatenate([masked] + img_ips, axis=2)

        if img_gt.shape[2] == 3:
            alpha = np.zeros_like(img_gt[:, :, :1])
            alpha.fill(255)
            img_gt = np.concatenate([img_gt, alpha], axis=2)

        return {
            "ips": ips.transpose(2, 0, 1),
            "mask": mask,
            "img_gt_with_alpha": img_gt,
            "filename": str(img_name),
        }

    def __len__(self):
        return len(self.paths)


def get_processed_audio_segment(center_frame_id, processed_wav, fps, sample_rate):
    time_center = center_frame_id / fps

    center_idx = int(time_center * sample_rate)
    center_idx = center_idx // 320
    start_idx = center_idx - 39

    new_logits = processed_wav.copy()
    if start_idx < 0:
        new_logits = np.pad(
            new_logits, ((-start_idx, 0), (0, 0)), mode="constant", constant_values=0
        )
        start_idx = 0

    end_idx = start_idx + 39 * 2
    if len(new_logits) < end_idx:
        new_logits = np.pad(
            new_logits,
            ((0, end_idx - len(new_logits)), (0, 0)),
            mode="constant",
            constant_values=0,
        )

    return new_logits[start_idx:end_idx, :]


def zero_wav_mels_when_silent_center(
    mels, mel_ps, zero_mels, zero=-4, t_secs=0.25, verbose=False
):
    if t_secs is None:
        return mels

    t_size = t_secs * mel_ps
    _, t_axis = mels.shape
    if t_size >= t_axis:
        # 원하는 구간이 원래 보고 있는 구간보다 크다면 그대로 준다.
        return mels

    t_size_half = int(t_size * 0.5)
    if verbose:
        print(f"t_axis:{t_axis}, t_size_half: {t_size_half}")
    t_axis_s, t_axis_e = int(t_axis / 2) - t_size_half, int(t_axis / 2) + t_size_half
    t_axis_s, t_axis_e = max(t_axis_s, 0), min(t_axis_e, t_axis)
    if (mels[:, t_axis_s:t_axis_e] == -4).all():
        return zero_mels

    return mels


class LipGanAudio(Dataset):
    def __init__(self, args, id_list, mel, fps):
        if args.model_type in ("stf_v1", "stf_v2"):
            raise "Did not support version < stf_v3"

        self.id_list = id_list
        self.mel = mel
        self.fps = fps

        self.silent_secs = (
            None if "silent_secs" not in args.keys() else args["silent_secs"]
        )
        self.zero_mels = np.full((96, args.mel_step_size), -4, dtype=np.float32)
        self.mel_ps = args.mel_ps

    def __getitem__(self, idx):
        mel = get_processed_audio_segment(self.id_list[idx], self.mel, self.fps, 16000)
        mel = zero_wav_mels_when_silent_center(
            mels=mel,
            mel_ps=self.mel_ps,
            zero_mels=self.zero_mels,
            t_secs=self.silent_secs,
        )
        return {
            "mel": mel,
        }

    def __len__(self):
        return len(self.id_list)