Spaces:
Sleeping
Sleeping
File size: 13,171 Bytes
e3af00f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import asyncio
import json
from pathlib import Path
import asyncstdlib
import numpy as np
import pandas as pd
from pydub import AudioSegment
from stf_alternative.compose import get_compose_func_without_keying, get_keying_func
from stf_alternative.dataset import LipGanAudio, LipGanImage, LipGanRemoteImage
from stf_alternative.inference import (
adictzip,
ainference_model_remote,
audio_encode,
dictzip,
get_head_box,
inference_model,
inference_model_remote,
)
from stf_alternative.preprocess_dir.utils import face_finder as ff
from stf_alternative.readers import (
AsyncProcessPoolBatchIterator,
ProcessPoolBatchIterator,
get_image_folder_async_process_reader,
get_image_folder_process_reader,
)
from stf_alternative.util import (
acycle,
get_crop_mp4_dir,
get_frame_dir,
get_preprocess_dir,
icycle,
read_config,
)
def calc_audio_std(audio_segment):
sample = np.array(audio_segment.get_array_of_samples(), dtype=np.int16)
max_value = np.iinfo(
np.int8
if audio_segment.sample_width == 1
else np.int16
if audio_segment.sample_width == 2
else np.int32
).max
return sample.std() / max_value, len(sample)
class RunningAudioNormalizer:
def __init__(self, ref_audio_segment, decay_rate=0.01):
self.ref_std, _ = calc_audio_std(ref_audio_segment)
self.running_var = np.float64(0)
self.running_cnt = 0
self.decay_rate = decay_rate
def __call__(self, audio_segment):
std, cnt = calc_audio_std(audio_segment)
self.running_var = (self.running_var + (std**2) * cnt) * (1 - self.decay_rate)
self.running_cnt = (self.running_cnt + cnt) * (1 - self.decay_rate)
return audio_segment._spawn(
(audio_segment.get_array_of_samples() / self.std * self.ref_std)
.astype(np.int16)
.tobytes()
)
@property
def std(self):
return np.sqrt(self.running_var / self.running_cnt)
def get_video_metadata(preprocess_dir):
json_path = preprocess_dir / "metadata.json"
with open(json_path, "r") as f:
return json.load(f)
class Template:
def __init__(
self,
config_path,
model,
template_video_path,
wav_std=False,
ref_wav=None,
verbose=False,
):
self.config = read_config(config_path)
self.model = model
self.template_video_path = Path(template_video_path)
self.preprocess_dir = Path(
get_preprocess_dir(model.work_root_path, model.args.name)
)
self.crop_mp4_dir = Path(
get_crop_mp4_dir(self.preprocess_dir, template_video_path)
)
self.dataset_dir = self.crop_mp4_dir / f"{Path(template_video_path).stem}_000"
self.template_frames_path = Path(
get_frame_dir(self.preprocess_dir, template_video_path, ratio=1.0)
)
self.verbose = verbose
self.remote = self.model.args.model_type == "remote"
self.audio_normalizer = (
RunningAudioNormalizer(ref_wav) if wav_std else lambda x: x
)
self.df = pd.read_pickle(self.dataset_dir / "df_fan.pickle")
metadata = get_video_metadata(self.preprocess_dir)
self.fps = metadata["fps"]
self.width, self.height = metadata["width"], metadata["height"]
self.keying_func = get_keying_func(self)
self.compose_func = get_compose_func_without_keying(self, ratio=1.0)
self.move = "move" in self.config.keys() and self.config.move
self.inference_func = inference_model_remote if self.remote else inference_model
self.batch_size = self.model.args.batch_size
self.unit = 1000 / self.fps
def _get_reader(self, num_skip_frames):
assert self.template_frames_path.exists()
return get_image_folder_process_reader(
data_path=self.template_frames_path,
num_skip_frames=num_skip_frames,
preload=self.batch_size,
)
def _get_local_face_dataset(self, num_skip_frames):
return LipGanImage(
args=self.model.args,
path=self.dataset_dir,
num_skip_frames=num_skip_frames,
)
def _get_remote_face_dataset(self, num_skip_frames):
return LipGanRemoteImage(
args=self.model.args,
path=self.dataset_dir,
num_skip_frames=num_skip_frames,
)
def _get_mel_dataset(self, audio_segment):
image_count = round(
audio_segment.duration_seconds * self.fps
) # 패딩 했기 때문에 batch_size로 나뉜다
ids = list(range(image_count))
mel = audio_encode(
model=self.model,
audio_segment=audio_segment,
device=self.model.device,
)
return LipGanAudio(
args=self.model.args,
id_list=ids,
mel=mel,
fps=self.fps,
)
def _get_face_dataset(self, num_skip_frames):
if self.remote:
return self._get_remote_face_dataset(num_skip_frames=num_skip_frames)
else:
return self._get_local_face_dataset(num_skip_frames=num_skip_frames)
def _wrap_reader(self, reader):
reader = icycle(reader)
return reader
def _wrap_dataset(self, dataset):
dataloader = ProcessPoolBatchIterator(
dataset=dataset,
batch_size=self.batch_size,
)
return dataloader
def get_reader(self, num_skip_frames=0):
reader = self._get_reader(num_skip_frames=num_skip_frames)
reader = self._wrap_reader(reader)
return reader
def get_mel_loader(self, audio_segment):
mel_dataset = self._get_mel_dataset(audio_segment)
return self._wrap_dataset(mel_dataset)
def get_face_loader(self, num_skip_frames=0):
face_dataset = self._get_face_dataset(num_skip_frames=num_skip_frames)
return self._wrap_dataset(face_dataset) # need cycle
# padding according to batch size.
def pad(self, audio_segment):
num_frames = audio_segment.duration_seconds * self.fps
pad = AudioSegment.silent(
(self.batch_size - (num_frames % self.batch_size)) * (1000 / self.fps)
)
return audio_segment + pad
def _prepare_data(
self,
audio_segment,
video_start_offset_frame,
):
video_start_offset_frame = video_start_offset_frame % len(self.df)
padded = self.pad(audio_segment)
face_dataset = self._get_face_dataset(num_skip_frames=video_start_offset_frame)
mel_dataset = self._get_mel_dataset(audio_segment=padded)
n_frames = len(mel_dataset)
assert n_frames % self.batch_size == 0
face_loader = self._wrap_dataset(face_dataset)
mel_loader = self._wrap_dataset(mel_dataset)
return padded, face_loader, mel_loader
def gen_infer(
self,
audio_segment,
video_start_offset_frame,
):
padded, face_loader, mel_loader = self._prepare_data(
audio_segment=audio_segment,
video_start_offset_frame=video_start_offset_frame,
)
for i, v in enumerate(dictzip(iter(mel_loader), iter(face_loader))):
inferred = self.inference_func(self.model, v, self.model.device)
for j, it in enumerate(inferred):
chunk_pivot = i * self.unit * self.batch_size + j * self.unit
chunk = padded[chunk_pivot : chunk_pivot + self.unit]
yield it, chunk
def gen_infer_batch(
self,
audio_segment,
video_start_offset_frame,
):
padded, face_loader, mel_loader = self._prepare_data(
audio_segment=audio_segment,
video_start_offset_frame=video_start_offset_frame,
)
for i, v in enumerate(dictzip(iter(mel_loader), iter(face_loader))):
inferred = self.inference_func(self.model, v, self.model.device)
yield inferred, padded[
i * self.unit * self.batch_size : (i + 1) * self.unit * self.batch_size
]
def gen_infer_batch_future(
self,
pool,
audio_segment,
video_start_offset_frame,
):
padded, face_loader, mel_loader = self._prepare_data(
audio_segment=audio_segment,
video_start_offset_frame=video_start_offset_frame,
)
futures = []
for i, v in enumerate(dictzip(iter(mel_loader), iter(face_loader))):
futures.append(
pool.submit(self.inference_func, self.model, v, self.model.device)
)
for i, future in enumerate(futures):
yield future, padded[
i * self.unit * self.batch_size : (i + 1) * self.unit * self.batch_size
]
def gen_infer_concurrent(
self,
pool,
audio_segment,
video_start_offset_frame,
):
for future, chunk in self.gen_infer_batch_future(
pool, audio_segment, video_start_offset_frame
):
for i, inferred in enumerate(future.result()):
yield inferred, chunk[i * self.unit : (i + 1) * self.unit]
def compose(
self,
idx,
frame,
output,
):
head_box_idx = idx % len(self.df)
head_box = get_head_box(
self.df,
move=self.move,
head_box_idx=head_box_idx,
)
alpha2 = self.keying_func(output, head_box_idx, head_box)
frame = self.compose_func(alpha2, frame[:, :, :4], head_box_idx)
return frame
def gen_frames(
self,
audio_segment,
video_start_offset_frame,
reader=None,
):
reader = reader or self.get_reader(num_skip_frames=video_start_offset_frame)
gen_infer = self.gen_infer(audio_segment, video_start_offset_frame)
for idx, ((o, a), f) in enumerate(
zip(gen_infer, reader), video_start_offset_frame
):
composed = self.compose(idx, f, o)
yield composed, a
def gen_frames_concurrent(
self,
pool,
audio_segment,
video_start_offset_frame,
reader=None,
):
reader = reader or self.get_reader(num_skip_frames=video_start_offset_frame)
gen_infer = self.gen_infer_concurrent(
pool,
audio_segment,
video_start_offset_frame,
)
for idx, ((o, a), f) in enumerate(
zip(gen_infer, reader), video_start_offset_frame
):
yield self.compose(idx, f, o), a
class AsyncTemplate(Template):
async def agen_infer_batch_future(
self,
pool,
audio_segment,
video_start_offset_frame,
):
assert self.remote
padded, face_loader, mel_loader = await self._aprepare_data(
pool,
audio_segment=audio_segment,
video_start_offset_frame=video_start_offset_frame,
)
futures = []
async for i, v in asyncstdlib.enumerate(
adictzip(aiter(mel_loader), aiter(face_loader))
):
futures.append(
asyncio.create_task(
ainference_model_remote(pool, self.model, v, self.model.device)
)
)
for i, future in enumerate(futures):
yield future, padded[
i * self.unit * self.batch_size : (i + 1) * self.unit * self.batch_size
]
async def _awrap_dataset(self, dataset):
dataloader = AsyncProcessPoolBatchIterator(
dataset=dataset,
batch_size=self.batch_size,
)
return dataloader
async def _aprepare_data(
self,
pool,
audio_segment,
video_start_offset_frame,
):
video_start_offset_frame = video_start_offset_frame % len(self.df)
padded = self.pad(audio_segment)
loop = asyncio.get_running_loop()
face_dataset, mel_dataset = await asyncio.gather(
loop.run_in_executor(
pool, self._get_face_dataset, video_start_offset_frame
),
loop.run_in_executor(pool, self._get_mel_dataset, padded),
)
n_frames = len(mel_dataset)
assert n_frames % self.batch_size == 0
face_loader = await self._awrap_dataset(face_dataset)
mel_loader = await self._awrap_dataset(mel_dataset)
return padded, face_loader, mel_loader
def _aget_reader(self, num_skip_frames):
assert self.template_frames_path.exists()
return get_image_folder_async_process_reader(
data_path=self.template_frames_path,
num_skip_frames=num_skip_frames,
preload=self.batch_size,
)
def _awrap_reader(self, reader):
reader = acycle(reader)
return reader
def aget_reader(self, num_skip_frames=0):
reader = self._aget_reader(num_skip_frames=num_skip_frames)
reader = self._awrap_reader(reader)
return reader
|