Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,673 Bytes
e3af00f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
<!--
Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Triton clients
The prerequisite for this page is to install PyTriton. You also need ```Linear``` model described in quick_start. You should run it so client can connect to it.
The clients section presents how to send requests to the Triton Inference Server using the PyTriton library.
## ModelClient
ModelClient is a simple client that can perform inference requests synchronously. You can use ModelClient to communicate with the deployed model using HTTP or gRPC protocol. You can specify the protocol when creating the ModelClient object.
For example, you can use ModelClient to send requests to a PyTorch model that performs linear regression:
<!-- This readme is for testing code snippets with pytest. It has codeblocks marked with pytest-codeblocks:cont to combine them into one test. -->
<!-- First test -->
<!--
```python
import torch
model = torch.nn.Linear(2, 3).eval()
import numpy as np
from pytriton.decorators import batch
@batch
def infer_fn(**inputs: np.ndarray):
(input1_batch,) = inputs.values()
input1_batch_tensor = torch.from_numpy(input1_batch)
output1_batch_tensor = model(input1_batch_tensor) # Calling the Python model inference
output1_batch = output1_batch_tensor.detach().numpy()
return [output1_batch]
from pytriton.model_config import ModelConfig, Tensor
from pytriton.triton import Triton
# Connecting inference callable with Triton Inference Server
triton = Triton()
# Load model into Triton Inference Server
triton.bind(
model_name="Linear",
infer_func=infer_fn,
inputs=[
Tensor(dtype=np.float32, shape=(-1,)),
],
outputs=[
Tensor(dtype=np.float32, shape=(-1,)),
],
config=ModelConfig(max_batch_size=128)
)
triton.run()
```
-->
<!--pytest-codeblocks:cont-->
```python
import torch
from pytriton.client import ModelClient
# Create some input data as a numpy array
input1_data = torch.randn(128, 2).cpu().detach().numpy()
# Create a ModelClient object with the server address and model name
client = ModelClient("localhost:8000", "Linear")
# Call the infer_batch method with the input data
result_dict = client.infer_batch(input1_data)
# Close the client to release the resources
client.close()
# Print the result dictionary
print(result_dict)
```
<!--pytest-codeblocks:cont-->
<!--
```python
# Stop the Triton server to free up resources
triton.stop()
# End of the first test
assert result_dict["OUTPUT_1"].shape == (128, 3)
```
-->
You can also use ModelClient to send requests to a model that performs image classification. The example assumes that a model takes in an image and returns the top 5 predicted classes. This model is not included in the PyTriton library.
You need to convert the image to a numpy array and resize it to the expected input shape. You can use Pillow package to do this.
<!--pytest.mark.skip-->
```python
import numpy as np
from PIL import Image
from pytriton.client import ModelClient
# Create some input data as a numpy array of an image
img = Image.open("cat.jpg")
img = img.resize((224, 224))
input_data = np.array(img)
# Create a ModelClient object with the server address and model name
client = ModelClient("localhost:8000", "ImageNet")
# Call the infer_sample method with the input data
result_dict = client.infer_sample(input_data)
# Close the client to release the resources
client.close()
# Print the result dictionary
print(result_dict)
```
You need to install Pillow package to run the above example:
```bash
pip install Pillow
```
## FuturesModelClient
FuturesModelClient is a concurrent.futures based client that can perform inference requests in a parallel way. You can use FuturesModelClient to communicate with the deployed model using HTTP or gRPC protocol. You can specify the protocol when creating the FuturesModelClient object.
For example, you can use FuturesModelClient to send multiple requests to a text generation model that takes in text prompts and returns generated texts. The TextGen model is not included in the PyTriton library. The example assumes that the model returns a single output tensor with the generated text. The example also assumes that the model takes in a list of text prompts and returns a list of generated texts.
You need to convert the text prompts to numpy arrays of bytes using a tokenizer from transformers. You also need to detokenize the output texts using the same tokenizer:
<!--pytest.mark.skip-->
```python
import numpy as np
from pytriton.client import FuturesModelClient
from transformers import AutoTokenizer
# Create some input data as a list of text prompts
input_data_list_text = ["Write a haiku about winter.", "Summarize the article below in one sentence.", "Generate a catchy slogan for PyTriton."]
# Create a tokenizer from transformers
tokenizer = AutoTokenizer.from_pretrained("gpt2")
# Convert the text prompts to numpy arrays of bytes using the tokenizer
input_data_list = [np.array(tokenizer.encode(prompt)) for prompt in input_data_list_text]
# Create a FuturesModelClient object with the server address and model name
with FuturesModelClient("localhost:8000", "TextGen") as client:
# Call the infer_sample method for each input data in the list and store the returned futures
output_data_futures = [client.infer_sample(input_data) for input_data in input_data_list]
# Wait for all the futures to complete and get the results
output_data_list = [output_data_future.result() for output_data_future in output_data_futures]
# Print tokens
print(output_data_list)
# Detokenize the output texts using the tokenizer and print them
output_texts = [tokenizer.decode(output_data["OUTPUT_1"]) for output_data in output_data_list]
for output_text in output_texts:
print(output_text)
```
You need to install transformers package to run the above example:
```bash
pip install transformers
```
You can also use FuturesModelClient to send multiple requests to an image classification model that takes in image data and returns class labels or probabilities. The ImageNet model is described above.
In this case, you can use the infer_batch method to send a batch of images as input and get a batch of outputs. You need to stack the images along the first dimension to form a batch. You can also print the class names corresponding to the output labels:
<!--pytest.mark.skip-->
``` python
import numpy as np
from PIL import Image
from pytriton.client import FuturesModelClient
# Create some input data as a list of lists of image arrays
input_data_list = []
for batch in [["cat.jpg", "dog.jpg", "bird.jpg"], ["car.jpg", "bike.jpg", "bus.jpg"], ["apple.jpg", "banana.jpg", "orange.jpg"]]:
batch_data = []
for filename in batch:
img = Image.open(filename)
img = img.resize((224, 224))
img = np.array(img)
batch_data.append(img)
# Stack the images along the first dimension to form a batch
batch_data = np.stack(batch_data, axis=0)
input_data_list.append(batch_data)
# Create a list of class names for ImageNet
class_names = ["tench", "goldfish", "great white shark", ...]
# Create a FuturesModelClient object with the server address and model name
with FuturesModelClient("localhost:8000", "ImageNet") as client:
# Call the infer_batch method for each input data in the list and store the returned futures
output_data_futures = [client.infer_batch(input_data) for input_data in input_data_list]
# Wait for all the futures to complete and get the results
output_data_list = [output_data_future.result() for output_data_future in output_data_futures]
# Print the list of result dictionaries
print(output_data_list)
# Print the class names corresponding to the output labels for each batch
for output_data in output_data_list:
output_labels = output_data["OUTPUT_1"]
for output_label in output_labels:
class_name = class_names[output_label]
print(f"The image is classified as {class_name}.")
```
## AsyncioModelClient
AsyncioModelClient is an asynchronous client that can perform inference requests using the asyncio library. You can use AsyncioModelClient to communicate with the deployed model using HTTP or gRPC protocol. You can specify the protocol when creating the AsyncioModelClient object.
For example, you can use AsyncioModelClient to send requests to a PyTorch model that performs linear regression:
<!--pytest.mark.skip-->
```python
import torch
from pytriton.client import AsyncioModelClient
# Create some input data as a numpy array
input1_data = torch.randn(2).cpu().detach().numpy()
# Create an AsyncioModelClient object with the server address and model name
client = AsyncioModelClient("localhost:8000", "Linear")
# Call the infer_sample method with the input data
result_dict = await client.infer_sample(input1_data)
# Close the client to release the resources
client.close()
# Print the result dictionary
print(result_dict)
```
You can also use FastAPI to create a web application that exposes the results of inference at an HTTP endpoint. FastAPI is a modern, fast, web framework for building APIs with Python 3.6+ based on standard Python type hints.
To use FastAPI, you need to install it with:
```bash
pip install fastapi
```
You also need an ASGI server, for production such as Uvicorn or Hypercorn.
To install Uvicorn, run:
```bash
pip install uvicorn[standard]
```
The `uvicorn` uses port `8000` as default for web server. Triton server default port is also `8000` for HTTP protocol. You can change uvicorn port by using `--port` option. PyTriton also supports custom ports configuration for Triton server. The class `TritonConfig` contains parameters for ports configuration. You can pass it to `Triton` during initialization:
<!--pytest.mark.skip-->
```python
config = TritonConfig(http_port=8015)
triton_server = Triton(config=config)
```
You can use this `triton_server` object to bind your inference model and run HTTP endpoint from Triton Inference Server at port `8015`.
Then you can create a FastAPI app that uses the AsyncioModelClient to perform inference and return the results as JSON:
<!--pytest.mark.skip-->
```python
from fastapi import FastAPI
import torch
from pytriton.client import AsyncioModelClient
# Create an AsyncioModelClient object with the server address and model name
config_client = AsyncioModelClient("localhost:8000", "Linear")
app = FastAPI()
@app.get("/predict")
async def predict():
# Create some input data as a numpy array
input1_data = torch.randn(2).cpu().detach().numpy()
# Create an AsyncioModelClient object from existing client to avoid pulling config from server
async with AsyncioModelClient.from_existing_client(config_client) as request_client:
# Call the infer_sample method with the input data
result_dict = await request_client.infer_sample(input1_data)
# Return the result dictionary as JSON
return result_dict
@app.on_event("shutdown")
async def shutdown():
# Close the client to release the resources
await config_client.close()
```
Save this file as `main.py`.
To run the app, use the command:
<!--pytest.mark.skip-->
```bash
uvicorn main:app --reload --port 8015
```
You can then access the endpoint at `http://127.0.0.1:8015/predict` and see the JSON response.
You can also check the interactive API documentation at `http://127.0.0.1:8015/docs`.
You can test your server using curl:
<!--pytest.mark.skip-->
```bash
curl -X 'GET' \
'http://127.0.0.1:8015/predict' \
-H 'accept: application/json'
```
Command will print three random numbers:
<!--pytest.mark.skip-->
```python
[-0.2608422636985779,-0.6435106992721558,-0.3492531180381775]
```
For more information about FastAPI and Uvicorn, check out these links:
- [FastAPI documentation](https://fastapi.tiangolo.com/)
- [Uvicorn documentation](https://www.uvicorn.org/)
## Client timeouts
When creating a [ModelClient][pytriton.client.client.ModelClient] or [FuturesModelClient][pytriton.client.client.FuturesModelClient] object, you can specify the timeout for waiting until the server and model are ready using the `init_timeout_s` parameter. By default, the timeout is set to 5 minutes (300 seconds).
Example usage:
<!--pytest.mark.skip-->
```python
import numpy as np
from pytriton.client import ModelClient, FuturesModelClient
input1_data = np.random.randn(128, 2)
with ModelClient("localhost", "MyModel", init_timeout_s=120) as client:
# Raises PyTritonClientTimeoutError if the server or model is not ready within the specified timeout
result_dict = client.infer_batch(input1_data)
with FuturesModelClient("localhost", "MyModel", init_timeout_s=120) as client:
future = client.infer_batch(input1_data)
...
# It will raise `PyTritonClientTimeoutError` if the server is not ready and the model is not loaded within 120 seconds
# from the time `infer_batch` was called by a thread from `ThreadPoolExecutor`
result_dict = future.result()
```
You can disable the default behavior of waiting for the server and model to be ready during first inference request by setting `lazy_init` to `False`:
<!--pytest.mark.skip-->
```python
import numpy as np
from pytriton.client import ModelClient, FuturesModelClient
input1_data = np.random.randn(128, 2)
# will raise PyTritonClientTimeoutError if server is not ready and model loaded
# within 120 seconds during intialization of client
with ModelClient("localhost", "MyModel", init_timeout_s=120, lazy_init=False) as client:
result_dict = client.infer_batch(input1_data)
```
You can specify the timeout for the client to wait for the inference response from the server.
The default timeout is 60 seconds. You can specify the timeout when creating the [ModelClient][pytriton.client.client.ModelClient] or [FuturesModelClient][pytriton.client.client.FuturesModelClient] object:
<!--pytest.mark.skip-->
```python
import numpy as np
from pytriton.client import ModelClient, FuturesModelClient
input1_data = np.random.randn(128, 2)
with ModelClient("localhost", "MyModel", inference_timeout_s=240) as client:
# Raises `PyTritonClientTimeoutError` if the server does not respond to inference request within 240 seconds
result_dict = client.infer_batch(input1_data)
with FuturesModelClient("localhost", "MyModel", inference_timeout_s=240) as client:
future = client.infer_batch(input1_data)
...
# Raises `PyTritonClientTimeoutError` if the server does not respond within 240 seconds
# from the time `infer_batch` was called by a thread from `ThreadPoolExecutor`
result_dict = future.result()
```
!!! warning "gRPC client timeout not fully supported"
There are some missing features in the gRPC client that prevent it from working correctly with timeouts
used during the wait for the server and model to be ready. This may cause the client to hang if the server
doesn't respond with the current server or model state.
!!! info "Server side timeout not implemented"
Currently, there is no support for server-side timeout. The server will continue to process the request even if the client timeout is reached.
|