Spaces:
Sleeping
Sleeping
File size: 1,422 Bytes
e3af00f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
#!/usr/bin/env python3
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Client for add_sub_python sample server."""
import logging
import numpy as np
from pytriton.client import ModelClient
logger = logging.getLogger("examples.linear_cupy.client")
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s")
VECTOR_SIZE = 10
BATCH_SIZE = 2
u_batch = np.ones((BATCH_SIZE, VECTOR_SIZE), dtype=np.float64)
v_batch = np.ones((BATCH_SIZE, VECTOR_SIZE), dtype=np.float64)
logger.info(f"u: {u_batch.tolist()}")
logger.info(f"v: {v_batch.tolist()}")
with ModelClient("localhost", "Linear") as client:
logger.info("Sending inference request")
result_batch = client.infer_batch(u_batch, v_batch)
for output_name, data_batch in result_batch.items():
logger.info(f"{output_name}: {data_batch.tolist()}")
|