File size: 5,241 Bytes
e3af00f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example of using Triton Server Wrapper with RAPIDS/CuPy library in Jupyter Notebook"
   ]
  },
  {
   "cell_type": "markdown",
   "source": [
    "### Pure Python/CuPy and Triton Wrapper equivalent of The RAPIDS-Triton Linear Example:\n",
    " <a href=\"https://github.com/rapidsai/rapids-triton-linear-example#the-rapids-triton-linear-example\">https://github.com/rapidsai/rapids-triton-linear-example#the-rapids-triton-linear-example</a>\n",
    " (Remark: Above example is focused on latency minimization - our equivalent is focused on easy of use)"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   }
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Triton server setup with custom linear model"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "markdown",
   "source": [
    "Install dependencies"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "outputs": [],
   "source": [
    "import sys\n",
    "!{sys.executable} -m pip install numpy"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Required imports:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import cupy as cp\n",
    "\n",
    "from pytriton.model_config import ModelConfig, Tensor\n",
    "from pytriton.triton import Triton\n",
    "from pytriton.decorators import batch"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Define linear model (for simplicity, sample model parameters are defined in class initializer):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "VECTOR_SIZE = 10\n",
    "\n",
    "class LinearModel:\n",
    "    def __init__(self):\n",
    "        self.alpha = 2\n",
    "        self.beta = cp.arange(VECTOR_SIZE)\n",
    "\n",
    "    @batch\n",
    "    def linear(self, **inputs):\n",
    "        u_batch, v_batch = inputs.values()\n",
    "        u_batch_cp, v_batch_cp = cp.asarray(u_batch), cp.asarray(v_batch)\n",
    "        lin = u_batch_cp * self.alpha + v_batch_cp + self.beta\n",
    "        return {\"lin\": cp.asnumpy(lin)}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Instantiate titon wrapper class and load model with defined callable:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "triton = Triton()\n",
    "lin_model = LinearModel()\n",
    "triton.bind(\n",
    "    model_name=\"Linear\",\n",
    "    infer_func=lin_model.linear,\n",
    "    inputs=[\n",
    "        Tensor(dtype=np.float64, shape=(VECTOR_SIZE,)),\n",
    "        Tensor(dtype=np.float64, shape=(VECTOR_SIZE,)),\n",
    "    ],\n",
    "    outputs=[\n",
    "        Tensor(name=\"lin\", dtype=np.float64, shape=(-1,)),\n",
    "    ],\n",
    "    config=ModelConfig(max_batch_size=128),\n",
    "    strict=True,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Run triton server with defined model inference callable"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "triton.run()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example inference performed with ModelClient calling triton server"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from pytriton.client import ModelClient\n",
    "\n",
    "VECTOR_SIZE = 10\n",
    "BATCH_SIZE = 2\n",
    "\n",
    "u_batch = np.ones((BATCH_SIZE, VECTOR_SIZE), dtype=np.float64)\n",
    "v_batch = np.ones((BATCH_SIZE, VECTOR_SIZE), dtype=np.float64)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with ModelClient(\"localhost\", \"Linear\") as client:\n",
    "    result_batch = client.infer_batch(u_batch, v_batch)\n",
    "\n",
    "for output_name, data_batch in result_batch.items():\n",
    "    print(f\"{output_name}: {data_batch.tolist()}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Stop triton server at the end"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "triton.stop()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}