Spaces:
Sleeping
Sleeping
File size: 8,041 Bytes
e3af00f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import asyncio
from itertools import chain
import numpy as np
import torch
from pydub import AudioSegment, silence
def check_split_lengths(silent_ranges, len_audio):
prev_end = 0
for idx, (start, end) in enumerate(silent_ranges):
if idx < len(silent_ranges) - 1:
if silent_ranges[idx + 1][0] - start > 70000:
return False
else:
if len_audio - start > 70000:
return False
return True
def load_and_split_audio_by_silence(
audio_segment,
silence_thresh: int = -75,
min_silence_len: int = 500,
min_chunk_length_ms: int = 40,
seek_step: int = 100,
verbose: bool = False,
):
audio_segment = audio_segment.set_channels(1)
audio_segment = audio_segment.set_frame_rate(16000)
for st in range(silence_thresh, -50, 5):
for msl in range(min_silence_len, 0, -100):
silent_ranges = silence.detect_silence(
audio_segment, msl, st, seek_step=seek_step
)
length_ok = check_split_lengths(silent_ranges, len(audio_segment))
if length_ok:
break
if len(silent_ranges) > 0 and length_ok:
break
if (
len(silent_ranges) == 0
and len(audio_segment) < 70000
and len(audio_segment) >= 40
):
return [audio_segment]
assert (
length_ok and len(silent_ranges) > 0
), "Each sentence must be within 70 seconds, including silence"
audio_chunks = []
prev_end = 0
for idx, (start, end) in enumerate(silent_ranges):
if idx < len(silent_ranges) - 1:
chunk_length = silent_ranges[idx + 1][0] - prev_end
silence_length = end - prev_end
chunk_length_samples = (
chunk_length * 16
) # Convert ms to samples (16000 samples/sec)
if idx == 0:
target_length_samples = (chunk_length_samples // 320 + 1) * 320 + 80
else:
target_length_samples = (chunk_length_samples // 320 + 1) * 320
target_length = target_length_samples // 16 # Convert samples back to ms
adjusted_end = prev_end + target_length
else:
silence_length = (
silent_ranges[-1][1] - prev_end
if silent_ranges[-1][1] != len(audio_segment)
else 0
)
adjusted_end = len(audio_segment)
silence_length_split = max(0, (silence_length - 300)) # ms
if silence_length_split <= 0:
silence_chunk = None
chunk = audio_segment[prev_end if idx == 0 else prev_end - 5 : adjusted_end]
else:
silence_length_samples = (
silence_length_split * 16
) # Convert ms to samples (16000 samples/sec)
if idx == 0:
target_length_samples = (silence_length_samples // 320 + 1) * 320 + 80
else:
target_length_samples = (silence_length_samples // 320 + 1) * 320
silence_length_split = (
target_length_samples // 16
) # Convert samples back to ms
silence_chunk = audio_segment[
prev_end if idx == 0 else prev_end - 5 : prev_end + silence_length_split
]
chunk = audio_segment[prev_end + silence_length_split - 5 : adjusted_end]
if len(chunk) >= min_chunk_length_ms:
if silence_chunk is not None:
audio_chunks.append(silence_chunk)
audio_chunks.append(chunk)
else:
if audio_chunks:
if silence_chunk is not None:
audio_chunks[-1] += silence_chunk
audio_chunks[-1] += chunk
prev_end = adjusted_end
return audio_chunks
def process_audio_chunks(
audio_processor, audio_encoder, audio_chunks: list[AudioSegment], device
):
features_list = []
for audio_chunk in audio_chunks:
features = process_audio_chunk(
audio_processor, audio_encoder, audio_chunk, device
)
features_list.append(features)
return features_list
def process_audio_chunk(audio_processor, audio_encoder, audio_chunk, device):
audio_data = np.array(audio_chunk.get_array_of_samples(), dtype=np.float32)
audio_data /= np.iinfo(
np.int8
if audio_chunk.sample_width == 1
else np.int16
if audio_chunk.sample_width == 2
else np.int32
).max
input_values = audio_processor(
audio_data, sampling_rate=16000, return_tensors="pt"
).to(device)["input_values"]
with torch.no_grad():
logits = audio_encoder(input_values=input_values)
return logits.last_hidden_state[0]
def audio_encode(model, audio_segment, device):
audio_chunks = load_and_split_audio_by_silence(audio_segment)
features_list = process_audio_chunks(
model.audio_processor, model.audio_encoder, audio_chunks, device
)
concatenated_features = torch.cat(features_list, dim=0)
return concatenated_features.detach().cpu().numpy()
def dictzip(*iterators):
try:
while True:
yield dict(chain(*[next(iterator).items() for iterator in iterators]))
except StopIteration as e:
pass
async def adictzip(*aiterators):
try:
while True:
yield dict(
chain(*[(await anext(aiterator)).items() for aiterator in aiterators])
)
except StopAsyncIteration as e:
pass
def to_img(t):
t = t.permute(0, 2, 3, 1)
img = ((t / 2.0) + 0.5) * 255.0
img = torch.clip(img, 0.0, 255.0).type(torch.uint8)
img = img.cpu().numpy()
img = img[:, :, :, [2, 1, 0]]
return img
def inference_model(model, v, device, verbose=False):
with torch.no_grad():
mel, ips, mask, alpha = (
v["mel"],
v["ips"],
v["mask"],
v["img_gt_with_alpha"],
)
cpu_ips = ips
cpu_alpha = alpha
audio = mel.to(device)
ips = ips.to(device).permute(0, 3, 1, 2)
pred = model.model(ips, audio)
gen_face = to_img(pred)
return [
{
"pred": o,
"mask": mask[j].numpy(),
"ips": cpu_ips[j].numpy(),
"img_gt_with_alpha": cpu_alpha[j].numpy(),
"filename": v["filename"][j],
}
for j, o in enumerate(gen_face)
]
def inference_model_remote(model, v, device, verbose=False):
ips, mel = v["ips"], v["mel"]
try:
pred = model.model(
ips=ips,
mel=mel,
)
return postprocess_result(pred, v)
except Exception as e:
return [None] * len(v["filename"])
def postprocess_result(pred, v):
pred = pred.cpu().numpy()
pred = pred.transpose(0, 2, 3, 1)
pred = pred[:, :, :, [2, 1, 0]]
return [
{
"pred": o,
"mask": v["mask"][j].numpy(),
"img_gt_with_alpha": v["img_gt_with_alpha"][j].numpy(),
"filename": v["filename"][j],
}
for j, o in enumerate(pred)
]
async def ainference_model_remote(pool, model, v, device, verbose=False):
ips, mel = v["ips"], v["mel"]
try:
pred = await model.model(
ips=ips,
mel=mel,
)
loop = asyncio.get_running_loop()
return await loop.run_in_executor(pool, postprocess_result, pred, v)
except Exception as e:
return [None] * len(v["filename"])
def get_head_box(df, move=False, head_box_idx=0, template_ratio=1.0):
# sz = df['cropped_size'].values[0]
# 원래 4k 템플릿에서 축소된 비율만큼 cropped_box 크기를 줄여준다.
if move:
x1, y1, x2, y2 = np.array(df["cropped_box"][head_box_idx])
else:
x1, y1, x2, y2 = np.round(
np.array(df["cropped_box"].values[0]) * template_ratio
).astype(np.uint8)
return x1, y1, x2, y2
|